首页> 外文期刊>Biomechanics and modeling in mechanobiology >A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices
【24h】

A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices

机译:一种基于CFD的Kriging代理建模方法,用于预测血液接触医疗装置中的特定装置特定血液溶解电力律系数

获取原文
获取原文并翻译 | 示例
           

摘要

Most stress-based hemolysis models used in computational fluid dynamics (CFD) are based on an empirical power law correlation between hemolysis generation and the flow-induced stress and exposure time. Empirical model coefficients are typically determined by fitting global hemolysis measurements in simplified blood shearing devices under uniform shear conditions and with well-defined exposure times. CFD simulations using these idealized global empirical coefficients are then performed to predict hemolysis in a medical device with complex hemodynamics. The applicability, however, of this traditional approach of using idealized coefficients for a real device with varying exposure times and non-uniform shear is currently unknown. In this study, we propose a new approach for determining device- and species-specific hemolysis power law coefficients (C, a, and b). The approach consists of calculating multiple hemolysis solutions using different sets of coefficients to map the hemolysis response field in three-dimensional (C, a, b) parameter space. The resultant response field is then compared with experimental data in the same device to determine the coefficients that when incorporated into the locally defined power law model yield correct global hemolysis predictions. We first develop the generalized approach by deriving analytical solutions for simple uniform and non-uniform shear flows (planar Couette flow and circular Poiseuille flow, respectively) that allow us to continuously map the hemolysis solution in (C, a, b) parameter space. We then extend our approach to more practical cases relevant to blood-contacting medical devices by replacing the requirement for an analytical solution in our generalized approach with CFD and Kriging surrogate modeling. Finally, we apply our verified CFD-based Kriging surrogate modeling approach to predict the device- and species-specific power law coefficients for developing laminar flow in a small capillary tube. We show that the resu
机译:计算流体动力学(CFD)中使用的大多数基于应力的溶血模型基于溶血产生与流动引起的应力和暴露时间之间的经验性幂律相关性。经验模型系数通常通过在均匀的剪切条件下和明确的曝光时间下拟合简化的血液剪切装置中的全球溶血测量来确定。然后,使用这些理想化的全局实证系数的CFD模拟以预测具有复杂血液动力学的医疗装置中的溶血。然而,使用具有不同曝光时间和非均匀剪切的真实装置的使用理想化系数的这种传统方法的适用性是目前未知的。在这项研究中,我们提出了一种用于确定特定于装置和物种的溶血律系数(C,A和B)的新方法。该方法包括使用不同组系数计算多个溶血解决方案,以在三维(C,A,B)参数空间中映射溶血响应场。然后将所得响应场与同一设备中的实验数据进行比较,以确定当结合到本地定义的电力法模型时的系数,得到正确的全局血液溶解预测。我们首先通过推导出用于简单均匀和非均匀剪切流量(平面循环流动和圆形POISUILLE流程)的分析解决方案来开发广义方法,使我们能够连续地映射(C,A,B)参数空间中的溶解溶液。然后,我们通过用CFD和Kriging代理建模的广义方法取代分析解决方案的要求,将我们的方法扩展到与血液接触医疗器械相关的更实际的案例。最后,我们应用了我们经过验证的基于CFD的Kriging代理建模方法,以预测用于在小毛细管中开发层流的装置和物种特定的电力律系数。我们展示了这些补救措施

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号