首页> 外文期刊>Biomechanics and modeling in mechanobiology >Computational predictions of the embolus-trapping performance of an IVC filter in patient-specific and idealized IVC geometries
【24h】

Computational predictions of the embolus-trapping performance of an IVC filter in patient-specific and idealized IVC geometries

机译:IVC滤波器在患者特异性和理想的IVC几何形状中栓塞诱惑性能的计算预测

获取原文
获取原文并翻译 | 示例
           

摘要

Embolus transport simulations are performed to investigate the dependence of inferior vena cava (IVC) filter embolus-trapping performance on IVC anatomy. Simulations are performed using a resolved two-way coupled computational fluid dynamics/six-degree-of-freedom approach. Three IVC geometries are studied: a straight-tube IVC, a patient-averaged IVC, and a patient-specific IVC reconstructed from medical imaging data. Additionally, two sizes of spherical emboli (3 and 5 mm in diameter) and two IVC orientations (supine and upright) are considered. The embolus-trapping efficiency of the IVC filter is quantified for each combination of IVC geometry, embolus size, and IVC orientation by performing 2560 individual simulations. The predicted embolus-trapping efficiencies of the IVC filter range from 10 to 100%, and IVC anatomy is found to have a significant influence on the efficiency results (). In the upright IVC orientation, greater secondary flow in the patient-specific IVC geometry decreases the filter embolus-trapping efficiency by 22-30 percentage points compared with the efficiencies predicted in the idealized straight-tube or patient-averaged IVCs. In a supine orientation, the embolus-trapping efficiency of the filter in the idealized IVCs decreases by 21-90 percentage points compared with the upright orientation. In contrast, the embolus-trapping efficiency is insensitive to IVC orientation in the patient-specific IVC. In summary, simulations predict that anatomical features of the IVC that are often neglected in the idealized models used for benchtop testing, such as iliac vein compression and anteroposterior curvature, generate secondary flow and mixing in the IVC and influence the embolus-trapping efficiency of IVC filters. Accordingly, inter-subject variability studies and additional embolus transport investigations that consider patient-specific IVC anatomy are recommended for future work.
机译:进行栓塞运输模拟以研究较差腔静脉(IVC)过滤栓塞性能对IVC解剖学的依赖性。使用已解决的双向耦合计算流体动力学/六维自由度方法进行仿真。研究了三个IVC几何形状:直管IVC,患者平均IVC和从医学成像数据重建的患者特异性IVC。另外,考虑两种尺寸的球形栓子(直径为3毫米)和两个IVC取向(仰卧和直立)。通过执行2560个单独的模拟来定量IVC滤波器的栓塞效率。发现IVC过滤器的预测栓塞效率为10%至100%,并且发现IVC解剖学对效率结果()具有显着影响。在直立IVC取向中,患者特异性IVC几何形状中的更大的二次流量将滤波器栓塞效率降低22-30个百分点,与理想的直管或患者平均IVCs中预测的效率相比。在仰视方向上,与直立定向相比,理想化IVCS中过滤器的栓塞效率降低了21-90个百分点。相反,栓塞诱捕效率对患者特异性IVC中的IVC取向不敏感。总之,模拟预测IVC的解剖学特征在用于支撑性测试的理想模型中通常被忽略,例如髂静脉压缩和前后曲率,在IVC中产生二次流动和混合,并影响IVC的栓塞效率过滤器。因此,建议审议患者特定IVC解剖学的对象间变异性研究和额外的栓塞运输调查,以便进行未来的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号