首页> 外文期刊>Biomechanics and modeling in mechanobiology >Towards the prediction of flow-induced shear stress distributions experienced by breast cancer cells in the lymphatics
【24h】

Towards the prediction of flow-induced shear stress distributions experienced by breast cancer cells in the lymphatics

机译:朝向淋巴管中乳腺癌细胞经历的流动诱导的流动剪切应力分布的预测

获取原文
获取原文并翻译 | 示例
           

摘要

Tumour metastasis in the lymphatics is a crucial step in the progression of breast cancer. The dynamics by which breast cancer cells (BCCs) travel in the lymphatics remains poorly understood. The goal of this work is to develop a model capable of predicting the shear stresses metastasising BCCs experience using numerical and experimental techniques. This paper models the fluidic transport of large particles (eta = d(p)/W = 0.1 - 0.4 where d(p) is the particle diameter and W is the channel width) subjected to lymphatic flow conditions (Re - 0.04), in a 100 x 100 mu m microchannel. The feasibility of using the dynamic fluid body interaction (DFBI) method to predict particle motion was assessed, and particle tracking experiments were performed. The experiments found that particle translational velocity decreased from the undisturbed fluid velocity with increasing particle size (5-14% velocity lag for eta = 0.1 - 0.3). DFBI simulations were found to better predict particle behaviour than theoretical predictions; however, mesh restrictions in the near-wall region (0.2 W > y > 0.8 W) result in computationally expensive models. The simulations were in good agreement with the experiments (< 12% difference) across the channel (0.2 W <= y <= 0.8 W), with differences up to 25% in the near-wall region. Particles experience a range of shear stresses (0.002-0.12 Pa) and spatial shear gradients (0.004 - 0.137 Pa/mu m) depending on their size and radial position. The predicted shear gradients are far in excess of values associated with BCC apoptosis (0.004 - 0.023 Pa/mu m). Increasing our understanding of the shear stress magnitudes and gradients experienced by BCCs could be leveraged to elucidate whether a particular BCC size or location exists that encourages metastasis within the lymphatics.
机译:淋巴管中的肿瘤转移是乳腺癌进展的关键步骤。乳腺癌细胞(BCCS)在淋巴管中行驶的动态仍然尚不清楚。这项工作的目标是开发一种能够预测使用数值和实验技术转移BCCS经验的剪切应力的模型。本文模拟了大颗粒的流体传输(ETA = D(P)/ W = 0.1-0.4,其中D(P)是粒径,W是通道宽度,在100 x 100 mu m microchannel。评估使用动态流体相互作用(DFBI)方法来预测颗粒运动的可行性,进行颗粒跟踪实验。实验发现,粒子平移速度从未受干扰的流体速度降低,粒度增加(eta = 0.1-0.3的5-14%速度滞后)。发现DFBI模拟比理论预测更好地预测颗粒行为;然而,近壁区域(0.2W> Y> 0.8W)的网格限制导致计算昂贵的模型。仿真与近壁区域的实验(0.2W <= Y <= 0.8W)相吻合(0.2W <= Y <= 0.8W),差异高达25%。颗粒根据其尺寸和径向位置体验一系列剪切应力(0.002-0.12Pa)和空间剪切梯度(0.004 - 0.137 pa / mu m)。预测的剪切梯度远远超过与BCC细胞凋亡相关的过量值(0.004-0.023 / mu m)。增加我们对BCCS经历的剪切应力幅度和梯度的理解可以利用来阐明是否存在促进淋巴管内转移的特定BCC大小或位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号