首页> 外文期刊>Biomechanics and modeling in mechanobiology >CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization
【24h】

CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization

机译:通过表面声波雾化将气溶胶输送到人肺的CFD模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Administration of drug in the form of particles through inhalation is generally preferable in the treatment of respiratory disorders. Conventional inhalation therapy devices such as inhalers and nebulizers, nevertheless, suffer from low delivery efficiencies, wherein only a small fraction of the inhaled drug reaches the lower respiratory tract. This is primarily because these devices are not able to produce a sufficiently fine drug mist that has aerodynamic diameters on the order of a few microns. This study employs computational fluid dynamics to investigate the transport and deposition of the drug particles produced by a new aerosolization technique driven by surface acoustic waves (SAWs) into an in silico lung model geometrically reconstructed using computed tomography scanning. The particles generated by the SAW are released in different locations in a spacer chamber attached to a lung model extending from the mouth to the 6th generation of the lung bronchial tree. An Eulerian approach is used to solve the Navier-Stokes equations that govern the airflow within the respiratory tract, and a Lagrangian approach is adopted to track the particles, which are assumed to be spherical and inert. Due to the complexity of the lung geometry, the airflow patterns vary as it penetrates deeper into the lung. High inertia particles tend to deposit at locations where the geometry experiences a significant reduction in cross section. Our findings, nevertheless, show that the injection location can influence the delivery efficiency: Injection points close to the spacer centerline result in deeper penetration into the lung. Additionally, we found that the ratio of drug particles entering the right lung is significantly higher than the left lung, independent of the injection location. This is in good agreement with this fact that the most of airflow enters to the right lobes.
机译:通过吸入以颗粒形式给予药物在治疗呼吸系统疾病中通常是优选的。然而,常规吸入治疗装置,例如吸入器和雾化器,患有低产量效率,其中只有一小部分吸入药物达到下呼吸道。这主要是因为这些装置不能产生足够精细的药物雾,其具有几微米的量级的空气动力学直径。该研究采用计算流体动力学来研究通过由表面声波(SAWS)驱动的新的气溶胶技术产生的药物颗粒的运输和沉积在使用计算机断层扫描的硅肺模型中的硅肺模型中。由锯产生的颗粒在附接到从口腔延伸到肺支气管的第6代延伸的肺模型的间隔腔中的不同位置释放。欧拉方法用于解决管道内的Navier-Stokes方程,用于控制呼吸道内的气流,并且采用拉格朗日方法来跟踪颗粒,这被假定为球形和惰性。由于肺几何形状的复杂性,气流图案随着渗透到肺部的渗透而变化。高惯性颗粒倾向于在几何形状经历截面显着减少的位置处沉积。尽管如此,我们的研究结果表明,注射位置会影响输送效率:接近间隔中心线的注入点导致肺部渗透到肺部。此外,我们发现,进入右肺的药物颗粒的比例显着高于左肺,与注射位置无关。这与这一事实很吻合:最多的气流进入右侧叶面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号