...
首页> 外文期刊>Acta biomaterialia >Multidimensional characterisation of biomechanical structures by combining Atomic Force Microscopy and Focused Ion Beam: A study of the rat whisker
【24h】

Multidimensional characterisation of biomechanical structures by combining Atomic Force Microscopy and Focused Ion Beam: A study of the rat whisker

机译:结合原子力显微镜和聚焦离子束对生物力学结构的多维表征:大鼠晶须的研究

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the heterogeneity of biological structures, particularly at the microano scale can offer insights valuable for multidisciplinary research in tissue engineering and biomimicry designs. Here we propose to combine nanocharacterisation tools, particularly Focused Ion Beam (FIB) and Atomic Force Microscopy (AFM) for three dimensional mapping of mechanical modulus and chemical signatures. The prototype platform is applied to image and investigate the fundamental mechanics of the rat face whiskers, a high-acuity sensor used to gain detailed information about the world. Grazing angle FIB milling was first applied to expose the interior cross section of the rat whisker sample, followed by a "lift-out" method to retrieve and position the target sample for further analyses. AFM force spectroscopy measurements revealed a non-uniform pattern of elastic modulus across the cross section, with a range from 0.8 GPa to 13.5 GPa. The highest elastic modulus was found at the outer cuticle region of the whisker, and values gradually decreased towards the interior cortex and medulla regions. Elemental mapping with EDS confirmed that the interior of the rat whisker is dominated by C, O, N, S, Cl and K, with a significant change of elemental distribution close to the exterior cuticle region. Based on these data, a novel comprehensive three dimensional (3D) elastic modulus model was constructed, and stress distributions under realistic conditions were investigated with Finite Element Analysis (FEA). The simulations could well account for the passive whisker deflections, with calculated resonant frequency as well as force deflection for the whiskers being in good agreement with reported experimental data. Limitations and further applications are discussed for the proposed FIB/AFM approach, which holds good promise as a unique platform to gain insights on various heterogeneous biomaterials and biomechanical systems. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
机译:了解生物结构的异质性,尤其是在微观/纳米尺度上,可以为组织工程和仿生设计的多学科研究提供有价值的见解。在这里,我们建议结合纳米表征工具,特别是聚焦离子束(FIB)和原子力显微镜(AFM)进行机械模量和化学特征的三维映射。该原型平台用于拍摄图像并研究老鼠脸颊须的基本机理,这是一种用于获取有关世界的详细信息的高敏锐度传感器。首先应用掠角FIB铣削以暴露大鼠晶须样品的内部横截面,然后采用“提起”方法取回并放置目标样品以进行进一步分析。 AFM力谱测量显示整个横截面的弹性模量分布不均匀,范围从0.8 GPa到13.5 GPa。在晶须的外部角质层区域发现了最高的弹性模量,并且其值朝着内部皮质和髓质区域逐渐降低。用EDS进行元素标测证实,大鼠晶须的内部以C,O,N,S,Cl和K为主,靠近表皮区域的元素分布发生了显着变化。基于这些数据,构建了一个新颖的综合三维(3D)弹性模量模型,并通过有限元分析(FEA)研究了实际条件下的应力分布。仿真可以很好地说明被动晶须的挠度,所计算的谐振频率以及晶须的力挠度与已报道的实验数据非常吻合。讨论了所提出的FIB / AFM方法的局限性和进一步的应用,该方法具有良好的前景,可以作为获得各种异质生物材料和生物力学系统见解的独特平台。 (C)2015 Acta Materialia Inc.,由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号