首页> 外文期刊>BioSystems >A real-time spiking cerebellum model for learning robot control
【24h】

A real-time spiking cerebellum model for learning robot control

机译:用于学习机器人控制的实时尖峰小脑模型

获取原文
获取原文并翻译 | 示例
           

摘要

We describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with conductance-based synapses. The neuron characteristics are derived from our earlier detailed models of the different cerebellar neurons. We tested the cerebellum model in a real-time control application with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP) at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (10) activity, which encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar model in a robot control system using a target-reaching task. We test whether the system learns to reach different target positions in a non-destructive way, therefore abstracting a general dynamics model. To test the system's ability to self-adapt to different dynamical situations, we present results obtained after changing the dynamics of the robotic platform significantly (its friction and load). The experimental results show that the cerebellar-based system is able to adapt dynamically to different contexts.
机译:我们描述了小脑的神经网络模型,该模型基于具有基于电导的突触的整合和发射尖峰神经元。神经元特征源自我们先前对不同小脑神经元的详细模型。我们在具有机器人平台的实时控制应用程序中测试了小脑模型。根据生物学系统,在不同的感觉运动途径中引入了延迟。小脑模型的主要可塑性是在平行纤维与浦肯野细胞连接处的依赖于尖峰时序的可塑性(STDP)。该STDP由劣等橄榄(10)活动驱动,该活动使用新颖的概率低频模型对错误信号进行编码。我们演示了使用目标达成任务的机器人控制系统中的小脑模型。我们测试系统是否以非破坏性方式学习到达不同的目标位置,从而抽象出一个通用的动力学模型。为了测试系统对不同动态情况的自适应能力,我们介绍了在显着更改机器人平台的动力学(其摩擦力和负载)后获得的结果。实验结果表明,基于小脑的系统能够动态适应不同的环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号