首页> 外文期刊>Acta biomaterialia >Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways
【24h】

Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways

机译:电纺超分子生物材料的水解和氧化降解:体外降解途径

获取原文
获取原文并翻译 | 示例
           

摘要

The emerging field of in situ tissue engineering (TE) of load bearing tissues places high demands on the implanted scaffolds, as these scaffolds should provide mechanical stability immediately upon implantation. The new class of synthetic supramolecular biomaterial polymers, which contain non-covalent interactions between the polymer chains, thereby forming complex 3D structures by self assembly. Here, we have aimed to map the degradation characteristics of promising (supramolecular) materials, by using a combination of in vitro tests. The selected biomaterials were all polycaprolactones (PCLs), either conventional and unmodified PCL, or PCL with supramolecular hydrogen bonding moieties (either 2-ureido-[1H]-pyrimidin-4-one or bis-urea units) incorporated into the backbone. As these materials are elastomeric, they are suitable candidates for cardiovascular TB applications. Electrospun scaffold strips of these materials were incubated with solutions containing enzymes that catalyze hydrolysis, or solutions containing oxidative species. At several time points, chemical, morphological, and mechanical properties were investigated. It was demonstrated that conventional and supramolecular PCL-based polymers respond differently to enzyme-accelerated hydrolytic or oxidative degradation, depending on the morphological and chemical composition of the material. Conventional PCL is more prone to hydrolytic enzymatic degradation as compared to the investigated supramolecular materials, while, in contrast, the latter materials are more susceptible to oxidative degradation. Given the observed degradation pathways of the examined materials, we are able to tailor degradation characteristics by combining selected PCL backbones with additional supramolecular moieties. The presented combination of in vitro test methods can be employed to screen, limit, and select biomaterials for pre-clinical in vivo studies targeted to different clinical applications. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
机译:承载组织的原位组织工程(TE)的新兴领域对植入的支架提出了很高的要求,因为这些支架在植入后应立即提供机械稳定性。新型的合成超分子生物材料聚合物,在聚合物链之间包含非共价相互作用,从而通过自组装形成复杂的3D结构。在这里,我们旨在通过结合体外测试来绘制有希望的(超分子)材料的降解特性。选定的生物材料是所有聚己内酯(PCL),无论是常规的还是未修饰的PCL,或具有并入骨架的超分子氢键部分(2-脲基[[1H]-嘧啶-4-酮或双脲]的PCL)。由于这些材料是弹性体,因此它们是心血管结核应用的合适候选材料。将这些材料的静电纺丝支架条与含有催化水解酶的溶液或含有氧化性物质的溶液一起孵育。在几个时间点上,研究了化学,形态和机械性能。结果表明,常规的和基于超分子的PCL基聚合物对酶促水解或氧化降解的反应不同,具体取决于材料的形态和化学组成。与所研究的超分子材料相比,常规的PCL更倾向于水解酶促降解,而相比之下,后者则更易于氧化降解。给定观察到的被检物质的降解途径,我们能够通过将选定的PCL主链与其他超分子部分结合来定制降解特性。所提出的体外测试方法组合可用于筛选,限制和选择生物材料,用于针对不同临床应用的临床前体内研究。 (C)2015 Acta Materialia Inc.,由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号