首页> 外文期刊>ACM Transactions on Embedded Computing Systems >System-Wide Energy Minimization for Real-Time Tasks: Lower Bound and Approximation
【24h】

System-Wide Energy Minimization for Real-Time Tasks: Lower Bound and Approximation

机译:实时任务的全系统能量最小化:下界和近似

获取原文
获取原文并翻译 | 示例
           

摘要

We present a dynamic voltage scaling (DVS) technique that minimizes system-wide energy consumption for both periodic and sporadic tasks. It is known that a system consists of processors and a number of other components. Energy-aware processors can be run in different speed levels; components like memory and I/O subsystems and network interface cards can be in a standby state when they are active, but idle. Processor energy optimization solutions are not necessarily efficient from the perspective of systems. Current system-wide energy optimization studies are often limited to periodic tasks with heuristics in getting approximated solutions. In this paper, we develop an exact dynamic programming algorithm for periodic tasks on processors with practical discrete speed levels. The algorithm determines the lower bound of energy expenditure in pseudopolynomial time. An approximation algorithm is proposed to provide performance guarantee with a given bound in polynomial running time. Because of their time efficiency, both the optimization and approximation algorithms can be adapted for online scheduling of sporadic tasks with irregular task releases. We prove that system-wide energy optimization for sporadic tasks is NP-hard in the strong sense. We develop (pseudo-) polynomial-time solutions by exploiting its inherent properties.
机译:我们提出了一种动态电压缩放(DVS)技术,该技术可最大程度地减少周期性任务和零星任务的系统能耗。已知系统由处理器和许多其他组件组成。节能处理器可以不同速度运行。诸如内存和I / O子系统以及网络接口卡之类的组件可以在处于活动状态时处于待机状态,但处于空闲状态。从系统角度来看,处理器能量优化解决方案不一定有效。当前的系统范围内的能源优化研究通常仅限于采用启发式方法获取近似解决方案的定期任务。在本文中,我们为具有实际离散速度级别的处理器上的周期性任务开发了一种精确的动态编程算法。该算法确定伪多项式时间内能量消耗的下限。提出了一种近似算法,以在多项式运行时间的给定范围内提供性能保证。由于它们的时间效率,优化算法和近似算法都可以用于具有不规则任务发布的零星任务的在线调度。我们证明,从零开始的意义上说,针对零星任务的系统范围内的能源优化是NP难的。我们通过利用其固有性质来开发(伪)多项式时间解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号