...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Lightweight architected hollow sphere foams for simultaneous noise and vibration control
【24h】

Lightweight architected hollow sphere foams for simultaneous noise and vibration control

机译:轻量级架构中空球体泡沫,用于同时噪音和振动控制

获取原文
获取原文并翻译 | 示例
           

摘要

Phononic metamaterials, composed of periodically topological structures and materials dispersions, can manipulate acoustic or elastic wave propagation, but not concurrently in most cases. Here we report a new type of three-dimensional (3D) architected hollow sphere foams that can attenuate acoustic and elastic waves synchronically. Our numerical simulation results reveal that the acoustic wave attenuation is attributed to local resonances in the drilled hollow spheres, which act as Helmholtz resonators. The elastic wave mitigation stems from Bragg scatterings in the 3D architected periodic hollow sphere foams. The numerically predicted acoustic and elastic wave band gaps are further validated against the corresponding transmission spectra, which are obtained by performing frequency domain analysis. Notably, elastic wave band gap properties can be decoupled from acoustic wave and independently tuned by tailoring the connectivity among the hollow spheres. The findings reported here offer new opportunities to design lightweight architected metamaterials to simultaneously control undesired noise and vibration over a wide frequency range.
机译:由定期拓扑结构和材料分散体组成的张素超材料可以操纵声学或弹性波传播,但在大多数情况下同时不同时。在这里,我们报告了一种新型的三维(3D)架构中空球形泡沫,其可以同步衰减声学和弹性波。我们的数值模拟结果表明,声波衰减归因于钻孔空心球体中的局部共振,其充当Helmholtz谐振器。弹性波缓解源于3D架构周期空心球体泡沫中的布拉格散射。通过执行频域分析而进一步验证数值预测的声学和弹性波带间隙,这是通过执行频域分析而获得的。值得注意的是,弹性波带隙特性可以通过声波解耦并通过剪裁空心球之间的连接而独立调谐。此处的调查结果为设计轻质的架构超材料提供了新的机会,以同时控制宽频范围内的不期望的噪音和振动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号