...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Synergistic effect of an atomically dual-metal doped catalyst for highly efficient oxygen evolution
【24h】

Synergistic effect of an atomically dual-metal doped catalyst for highly efficient oxygen evolution

机译:显着氧气掺杂催化剂对高效氧化催化剂的协同作用

获取原文
获取原文并翻译 | 示例
           

摘要

The oxygen evolution reaction (OER) involving multi-step electron transfer is a challenging approach for water-splitting due to its sluggish kinetics. It is desirable to explore more efficient electro-catalysts with earth-abundant elements. Herein, we employed a high-temperature polymerization method to develop a structure consisting of graphitic carbon nitride (g-C3N4) nanopatch enveloped carbon nanotubes (CNTs), where isolated Ni and Fe atoms were embedded into the tri-s-triazine units of g-C3N4 by forming a metal-N-x structure. The designed dual-metal catalyst exhibited remarkable OER performance with an extremely low overpotential (similar to 326 mV at 10 mA cm(-2)) and a small Tafel slope (67 mV per decade), which is superior to those of state-of-the-art electrocatalysts with metal-Nx coordination and the benchmark IrO2/C catalyst. In combination with atomic microscopy observations, our synchrotron-based X-ray absorption spectroscopy results revealed that, as compared to single-metal (Fe or Ni) doped hybrids, the electronic structures of both Ni and Fe atoms were reconfigured in the obtained dual-metal samples. Notably, increase of the oxidative state in Ni sites after multi-metal doping directly contributed to more active sites and favored the OER process, assisted by the porous structure and good electrical contacts between CNTs and g-C3N4. This investigation clearly demonstrated a unique synergistic effect in atomically dual-metal doped catalysts, thus it may provide a versatile route to regulate the electronic structures of single atomic catalysts through engineering of neighboring elements and coordination number.
机译:涉及多步电子转移的氧气进化反应(OER)是由于其缓慢的动力学而具有挑战性的水分方法。期望利用瓦尔丰的元素探索更有效的电催化剂。在此,我们采用高温聚合方法,形成由石墨氮化物(G-C3N4)纳米分离包膜碳纳米管(CNT)组成的结构,其中分离的Ni和Fe原子嵌入到G的三级三嗪单位中通过形成金属-NX结构-C3N4。设计的双金属催化剂具有极大的过电位(类似于326 mV,在10 mA cm(-2))和小Tafel斜坡(每十年67 mV)上的卓越性能,其优于状态 - 艺术电催化剂与金属-NX协调和基准IRO2 / C催化剂。与原子显微镜观察组合,我们的同步辐射基X射线吸收光谱结果显示,与单金属(Fe或Ni)掺杂的杂交物相比,在获得的双重中重新配置Ni和Fe原子的电子结构金属样品。值得注意的是,在多金属掺杂直接导致更多活性位点并优选在多孔结构和CNT和G-C3N4之间的良好电触点辅助,增加了Ni位点中的氧化状态。该研究清楚地证明了原子上双金属掺杂催化剂的独特协同作用,因此可以提供一种通过相邻元件和协调数来调节单个原子催化剂的电子结构的通用途径。

著录项

  • 来源
  • 作者单位

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Chinese Acad Sci Shanghai Inst Appl Phys Shanghai Synchrotron Radiat Facil Shanghai 201204 Peoples R China;

    Chinese Acad Sci Inst Phys Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    Univ Sci &

    Technol China CAS Ctr Excellence Nanosci Dept Chem Phys Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号