...
首页> 外文期刊>Journal of Materials Science >Microscopic investigation of local structural and electronic properties of tungsten tetraboride: a superhard metallic material
【24h】

Microscopic investigation of local structural and electronic properties of tungsten tetraboride: a superhard metallic material

机译:钨四硼化钨局部结构和电子性质的显微镜调查:超硬金属材料

获取原文
获取原文并翻译 | 示例
           

摘要

Tungsten borides, such as tungsten tetraboride ( WB4) exhibit a wide range of appealing physical properties, including superhardness, chemical inertness and electronic conductivity. Among the various tungsten borides, the most puzzling remains WB4, with its crystal structure to linger in question for over half a century ( Lech et al. in Proc Natl Acad Sci USA 112: 3223- 3228, 2015). In the present investigation, polycrystalline WB4 samples have been synthesized with two different methods and characterized at the atomic level by combining X- ray diffraction, scanning electron microscopy and nuclear magnetic resonance spectroscopy. The 11 B multiple quantum MAS experiment revealed a range of boron sites that were not resolved within the experiment. This result is in contrast to the 11 B MAS spectrum of WB2 with four resolved, discernible boron resonances. However, despite the structural complexity and boron- site variety in WB4, the detection of a single exponential of 11 B spin- lattice relaxation recovery suggested that all of the boron sites relaxed with a single time constant. The Knight shift ( K) was found to be independent of temperature while the T 1 1 was governed by the Korringa law with a Korringa product T1T = 350 sK across the entire temperature range ( 168- 437 K) of this study. The measured Korringa product was small, indicating substantial spin- lattice relaxation resulting from coupling with the conduction carriers. The abovementioned experimental results not only clearly rule out structures, such as the `` MoB4- type phase'' of WB4, with the resulting Fermi level in the pseudo- gap as has previously been predicted theoretically; but they also provide a comprehensible and valuable insight into the structural and electronic properties of WB4 at the atomic level.
机译:硼化钨等钨硼化物(WB4)表现出广泛的吸引物理性质,包括超硬,化学惰性和电子电导率。在各种钨硼化物中,最令人费解的是WB4,其晶体结构有超过半个世纪的问题(Lech等人。在Proc Natl Acad Sci USA 112:3223-228,2015)。在本研究中,通过两种不同的方法合成多晶WB4样品,并通过组合X射线衍射,扫描电子显微镜和核磁共振光谱来表征原子水平。 11b多量子MAS实验揭示了一系列硼部位在实验中未解决。该结果与WB2的11b MAS谱形成对比,具有四个分辨,可辨别的硼共振。然而,尽管WB4中的结构复杂性和硼现场品种,但检测到11b旋转晶格松弛恢复的单个指数表明,所有硼站点都恒定恒定。发现骑士移位(k)与温度无关,而T 1 1由Korringa Lave在整个温度范围内(168-437 k)的Korringa产品T1T = 350 SK管辖。测量的korringa产物很小,表明与导通载体的耦合导致的大量旋转晶格松弛。上述实验结果不仅清楚地排除了WB4的结构,例如WB4的“Mob4型阶段”,因此在理论上预先预测的伪差距中产生的费米水平;但他们还提供了对原子水平在WB4的结构和电子特性的可综合和有价值的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号