首页> 外文期刊>Journal of Hydrology >Multi-scale quantitative precipitation forecasting using nonlinear and nonstationary teleconnection signals and artificial neural network models
【24h】

Multi-scale quantitative precipitation forecasting using nonlinear and nonstationary teleconnection signals and artificial neural network models

机译:使用非线性和非间断电信连接信号和人工神经网络模型的多尺度定量降水预测

获取原文
获取原文并翻译 | 示例
           

摘要

Global sea surface temperature (SST) anomalies are observed to have a significant effect on terrestrial precipitation patterns throughout the United States. SST variations have been correlated with terrestrial precipitation via ocean-atmospheric interactions known as climate teleconnections. This study demonstrates how the scale effect could affect the forecasting accuracy with or without the inclusion of those newly discovered unknown teleconnection signals between Adirondack precipitation and SST anomaly in the Atlantic and Pacific oceans. Unique SST regions of both known and unknown telecommunication signals were extracted from the wavelet analysis and used as input variables in an artificial neural network (ANN) forecasting model. Monthly and seasonal scales were considered with respect to a host of long-term (30-year) nonlinear and nonstationary teleconnection signals detected locally at the study site of Adirondack. Similar intra-annual time-lag effects of SST on precipitation variability are salient at both time scales. Sensitivity analysis of four scenarios reveals that more improvements of the forecasting accuracy of the ANN model can be observed by including both known and unknown teleconnection patterns at both time scales, although such improvements are not salient. Research findings also highlight the importance of choosing the forecasting model at the seasonal scale to predict more accurate peak values and global trends of terrestrial precipitation in response to teleconnection signals. The scale shift from monthly to seasonal may improve results by 17% and 17 mm/day in terms of R squared and root of mean square error values, respectively, if both known and unknown SST regions are considered for forecasting. (C) 2017 Elsevier B.V. All rights reserved.
机译:观察到全球海表面温度(SST)异常对整个美国的地面降水模式产生显着影响。 SST变化与通过被称为气候拨连接的海洋大气相互作用相关的陆地降水。本研究表明了规模效应如何影响预测准确性,或者在大西洋和太平洋在大西洋和太平洋中的SST异常之间的那些新发现的未知的扎切信号中的预测精度。从小波分析中提取已知和未知的电信信号的独特SST区域,并用作人工神经网络(ANN)预测模型中的输入变量。在Adirondack的研究现场在本地检测到的长期(30年)的长期(30年)非线性和非间平电信连接信号,考虑了每月和季节性鳞片。 SST在降水变异性上的类似年度滞后效果在两个时间尺度都是突出的。四种场景的灵敏度分析表明,通过在两个时间尺度上包括已知和未知的遥连接图案,可以观察到ANN模型的预测精度的更多改进,尽管这种改进不突出。研究结果还突出了在季节规模中选择预测模型的重要性,以预测响应电信连接信号的更准确的达到陆地降水的峰值和全球趋势。如果考虑了已知和未知的SST区域,则每月到季节性从每月到季节性的刻度均可能会提高17%和17 mm /天/天的均线误差值的根部。 (c)2017年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号