...
首页> 外文期刊>The Journal of Physiology >Cortical control of object‐specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study
【24h】

Cortical control of object‐specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study

机译:对象特异性掌握的皮质控制依赖于对活动和有效连通性的调整:常见的MARMOSET研究

获取原文
获取原文并翻译 | 示例
           

摘要

Key points The cortical mechanisms of grasping have been extensively studied in macaques and humans; here, we investigated whether common marmosets could rely on similar mechanisms despite strong differences in hand morphology and grip diversity. We recorded electrocorticographic activity over the sensorimotor cortex of two common marmosets during the execution of different grip types, which allowed us to study cortical activity (power spectrum) and physiologically inferred connectivity (phase‐slope index). Analyses were performed in beta (16–35?Hz) and gamma (75–100?Hz) frequency bands and our results showed that beta power varied depending on grip type, whereas gamma power displayed clear epoch‐related modulation. Strength and direction of inter‐area connectivity varied depending on grip type and epoch. These findings suggest that fundamental control mechanisms are conserved across primates and, in future research, marmosets could represent an adequate model to investigate primate brain mechanisms. Abstract The cortical mechanisms of grasping have been extensively studied in macaques and humans. Here, we investigated whether common marmosets could rely on similar mechanisms despite striking differences in manual dexterity. Two common marmosets were trained to grasp‐and‐pull three objects eliciting different hand configurations: whole‐hand, finger and scissor grips. The animals were then chronically implanted with 64‐channel electrocorticogram arrays positioned over the left premotor, primary motor and somatosensory cortex. Power spectra, reflecting predominantly cortical activity, and phase‐slope index, reflecting the direction of information flux, were studied in beta (16–35?Hz) and gamma (75–100?Hz) bands. Differences related to grip type, epoch (reach, grasp) and cortical area were statistically assessed. Results showed that whole‐hand and scissor grips triggered stronger beta desynchronization than finger grip. Task epochs clearly modulated gamma power, especially for finger and scissor grips. Considering effective connectivity, finger and scissor grips evoked stronger outflow from primary motor to premotor cortex, whereas whole‐hand grip displayed the opposite pattern. These findings suggest that fundamental control mechanisms, relying on adjustments of cortical activity and connectivity, are conserved across primates. Consistently, marmosets could represent a good model to investigate primate brain mechanisms.
机译:关键点在猕猴和人类中掌握的皮质机制已被广泛研究;在这里,尽管手形态和握持多样性强烈差异,我们还研究了普通的植物是否可以依赖类似机制。在执行不同的抓握类型期间,我们在两个常见的Marmosets的Sensorimotor皮层上记录了电加理摄取活动,这使我们能够研究皮层活动(功率谱)和生理学上推断的连接(相位斜率指数)。分析在β(16-35〜Hz)中进行,γ(75-100〜Hz)频带,我们的结果表明,β功率根据握把型而变化,而伽马电力显示出明确的跨偶联相关的调制。面部间连接的强度和方向根据抓握式和时代而变化。这些调查结果表明,基本控制机制在灵长类动物中保存,并且在未来的研究中,Marmosets可以代表一个适当的模型来调查灵长类动物的脑机制。摘要掌握的皮质机制已在猕猴和人类中广泛研究。在这里,我们调查的普通狨猴是否能尽管手巧显着的差异依赖于类似的机制。训练了两个常见的羊肉训练,以抓住三个物体引出不同的手配置:全手,手指和剪刀。然后将动物慢慢地植入有64通道的电灼图阵列,其定位在左侧热球,初级电动机和体索病变皮层上。在β(16-35·Hz)和γ(75-100〜Hz)带中研究了反映信息通量方向的电力光谱,反射主要皮质活动和相位斜率指数。统计评估与抓握类型,时期(伸展,掌握)和皮质区域相关的差异。结果表明,总用手柄和剪刀夹具触发比手指握把更强的Beta Desynchization。任务时期清楚地调制伽玛功率,特别是对于手指和剪刀夹具。考虑有效的连通性,手指和剪刀夹具从初级电机唤起强大的流出到首映式皮质,而全手握把显示相反的图案。这些研究结果表明,基本控制机制依赖于调整皮质活动和连接,在灵长类动物中保存。始终如一地,Marmosets可以代表调查灵长类动物脑机制的良好模型。

著录项

  • 来源
    《The Journal of Physiology》 |2017年第23期|共19页
  • 作者单位

    Laboratory for Symbolic Cognitive DevelopmentRIKEN Brain Science InstituteSaitama Japan;

    Laboratory for Symbolic Cognitive DevelopmentRIKEN Brain Science InstituteSaitama Japan;

    Laboratory for Symbolic Cognitive DevelopmentRIKEN Brain Science InstituteSaitama Japan;

    Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di;

    Graphene LabsIstituto Italiano di TecnologiaGenoa Italy;

    Laboratory for Symbolic Cognitive DevelopmentRIKEN Brain Science InstituteSaitama Japan;

    Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di;

    Department of Biosciences and Informatics Faculty of Science and TechnologyKeio UniversityKanagawa;

    Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di;

    Laboratory for Symbolic Cognitive DevelopmentRIKEN Brain Science InstituteSaitama Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人体生理学;
  • 关键词

    electrocorticography (ECoG); grip type; marmoset monkey; motor cortex;

    机译:电加电图(ECOG);握把型;MARAMOSET猴子;电机皮质;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号