...
首页> 外文期刊>The Journal of Physiology >An allosteric gating model recapitulates the biophysical properties of I-K,I-L expressed in mouse vestibular type I hair cells
【24h】

An allosteric gating model recapitulates the biophysical properties of I-K,I-L expressed in mouse vestibular type I hair cells

机译:一个变形类选晶模型概括了在小鼠前庭I型毛细胞中表达的I-K的生物物理性质

获取原文
获取原文并翻译 | 示例
           

摘要

Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low-voltage-activated outward rectifying K+ current, I-K,I-L. The biophysical properties and molecular profile of I-K,I-L are still largely unknown. By using the patch-clamp whole-cell technique, we examined the voltage- and time-dependent properties of I-K,I-L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of I-K,I-L were affected by an unstable K+ equilibrium potential (VeqK+). Both the outward and inward K+ currents shifted VeqK+ consistent with K+ accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated I-K,I-L showed a half-activation at -79.6 mV and a steep voltage dependence (2.8mV). I-K,I-L also showed complex activation and deactivation kinetics, which we faithfully reproduced by an allosteric channel gating scheme where the channel is able to open from all (five) closed states. The "early' open states substantially contribute to I-K,I-L activation at negative voltages. This study provides the first complete description of the "native' biophysical properties of I-K,I-L in adult mouse vestibular type I hair cells.
机译:I型和II型毛细胞是哺乳动物前庭上皮细胞的感觉受体。 I型毛细胞的特征在于它们的基石膜被包裹在单个大型传入神经末端,命名为Calyx,并通过表达低压活化的向外整流k +电流I-K,I-L。 I-K的生物物理性质和分子谱仍然很大程度上是未知的。通过使用Patch-Clamp全细胞技术,我们检查了鼠标半圆管的I型毛细胞I-K,I-L的电压和时间依赖性。我们发现I-K,I-L的生物物理性质受到不稳定的K +均衡电位(Veqk +)的影响。向外和向内的K +电流均在细胞外空间中分别与K +积聚或耗尽相一致的Veqk +,这归因于附着在头发细胞的基石外侧膜附着的残留萼中。因此,我们优化了毛细胞解离方案,以便在没有萼的情况下分离成熟型毛孔细胞。在这些细胞中,未污染的I-k,I-L显示在-79.6mV的半激活和陡峭的电压依赖性(2.8mV)。 I-K,I-L还显示了复杂的激活和失活动力学,我们忠实地由颠覆频道门控计划,其中通道能够从所有(五个)封闭状态打开。 “早期”开放状态基本上有助于负电压的I-K,I-L激活。该研究提供了I-K,I-L中的“天然”生物物理性质的第一个完整描述,I-K,I-L在成人小鼠前庭I型毛细胞中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号