...
首页> 外文期刊>The Journal of Physiology >Endogenous nitric oxide formation in cardiac myocytes does not control respiration during beta-adrenergic stimulation
【24h】

Endogenous nitric oxide formation in cardiac myocytes does not control respiration during beta-adrenergic stimulation

机译:心肌细胞中的内源性一氧化氮形成在β-肾上腺素能刺激期间不控制呼吸

获取原文
获取原文并翻译 | 示例
           

摘要

Endothelial nitric oxide (NO) controls cardiac oxygen (O-2) consumption in a paracrine way by slowing respiration at the mitochondrial electron transport chain. While NO synthases (NOSs) are also expressed in cardiac myocytes, it is unclear whether they control respiration in an intracrine way. Furthermore, the existence of a mitochondrial NOS is controversial. Here, by combining fluorescence imaging with electrical field stimulation, the patch-clamp method and knock-out technology, we determined the sources and consequences of intracellular NO formation during workload transitions in isolated murine and guinea pig cardiac myocytes and mitochondria. Using 4-amino-5-methylamino-2',7' -difluorofluorescein diacetate (DAF) as a fluorescent NO-sensor that locates to the cytosol and mitochondria, we observed that NO increased by similar to 12% within 3 min of beta-adrenergic stimulation in beating cardiac myocytes. This NOstems fromneuronal NOS (nNOS), but not endothelial (eNOS). After patch clamp-mediated dialysis of cytosolic DAF, the remaining NO signals (mostly mitochondrial) were blocked by nNOS deletion, but not by inhibiting the mitochondrial Ca2+ uniporter with Ru360. While in isolated mitochondria exogenous NO inhibited respiration and reduced the NAD(P) H redox state, pyridine nucleotide redox states were unaffected by pharmacological or genetic disruption of endogenous nNOS or eNOS during workload transitions in cardiac myoctyes. We conclude that under physiological conditions, nNOS is the most relevant source for NO in cardiac myocytes, but this nNOS is not located in mitochondria and does not control respiration. Therefore, cardiac O-2 consumption is controlled by endothelial NO in a paracrine, but not intracrine, fashion.
机译:通过在线粒体电子传输链处减缓呼吸,内皮一氧化物(NO)以旁静脉的方式控制心脏氧(O-2)消耗。虽然在心肌细胞中也没有表达合成酶(NOSS),但目前尚不清楚它们是否以细胞内的方式控制呼吸。此外,线粒体NOS的存在是有争议的。这里,通过将荧光成像与电场刺激相结合,补丁钳制方法和敲除技术,我们确定了在孤立的鼠和豚鼠心肌细胞和线粒体中的工作量转换期间细胞内不会形成的来源和后果。使用4-氨基-5-甲基氨基-2',7'-氟荧光素二乙酸酯(DAF)作为定位于细胞溶胶和线粒体的荧光无传感器,我们观察到在β-内没有增加12%。抗心肌细胞的肾上腺素能刺激。这种Nostems fromneuronal nos(nnos),但不是内皮(eNOS)。在夹持钳位介导的细胞溶质DAF的透析之后,通过NNOS缺失阻断剩余的无信号(大多数线粒体),但不是通过抑制用RU360的线粒体Ca2 +单百+。虽然在孤立的线粒体外部没有抑制呼吸并降低NAD(P)H氧化还原状态时,吡啶核苷酸氧化还原态不受所述心脏肌肌中的工作量转变期间内源性NNOS或enos的药理或遗传破坏的影响。我们得出结论,在生理条件下,NNOS是心肌细胞中最相关的来源,但这种NNO不位于线粒体中,并不能控制呼吸。因此,心脏o-2消耗由旁静脉内皮没有控制,但不是胞内的时尚。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号