首页> 外文期刊>The Journal of Physiology >Intracellular calcium stores mediate metaplasticity at hippocampal dendritic spines
【24h】

Intracellular calcium stores mediate metaplasticity at hippocampal dendritic spines

机译:细胞内钙储存在海马树突刺的介导

获取原文
获取原文并翻译 | 示例
           

摘要

Key points Calcium (Ca 2+ ) entry mediated by NMDA receptors is considered central to the induction of activity‐dependent synaptic plasticity in hippocampal area CA1; this description does not, however, take into account the potential contribution of endoplasmic reticulum (ER) Ca 2+ stores. The ER has a heterogeneous distribution in CA1 dendritic spines, and may introduce localized functional differences in Ca 2+ signalling between synapses, as suggested by experiments on metabotropic receptor‐dependent long‐term depression. A physiologically detailed computational model of Ca 2+ dynamics at a CA3–CA1 excitatory synapse characterizes the contribution of spine ER via metabotropic signalling during plasticity induction protocols. ER Ca 2+ release via IP 3 receptors modulates NMDA receptor‐dependent plasticity in a graded manner, to selectively promote synaptic depression with relatively diminished effect on LTP induction; this may temper further strengthening at the stronger synapses which are preferentially associated with ER‐containing spines. Acquisition of spine ER may thus represent a local, biophysically plausible ‘metaplastic switch’ at potentiated CA1 synapses, contributing to the plasticity–stability balance in neural circuits. Abstract Long‐term plasticity mediated by NMDA receptors supports input‐specific, Hebbian forms of learning at excitatory CA3–CA1 connections in the hippocampus. There exists an additional layer of stabilizing mechanisms that act globally as well as locally over multiple time scales to ensure that plasticity occurs in a constrained manner. Here, we investigated the role of calcium (Ca 2+ ) stores associated with the endoplasmic reticulum (ER) in the local regulation of plasticity at individual CA1 synapses. Our study was spurred by (1) the curious observation that ER is sparsely distributed in dendritic spines, but over‐represented in larger spines that are likely to have undergone activity‐dependent strengthening, and (2) evidence suggesting that ER motility at synapses can be rapid, and accompany activity‐regulated spine remodelling. We constructed a physiologically realistic computational model of an ER‐bearing CA1 spine, and examined how IP 3 ‐sensitive Ca 2+ stores affect spine Ca 2+ dynamics during activity patterns mimicking the induction of long‐term potentiation and long‐term depression (LTD). Our results suggest that the presence of ER modulates NMDA receptor‐dependent plasticity in a graded manner that selectively enhances LTD induction. We propose that ER may locally tune Ca 2+ ‐based plasticity, providing a braking mechanism to mitigate runaway strengthening at potentiated synapses. Our study provides a biophysically accurate description of postsynaptic Ca 2+ regulation, and suggests that ER in the spine may promote the re‐use of hippocampal synapses with saturated strengths.
机译:NMDA受体介导的关键点钙(Ca 2+)进入被认为是海马区域CA1中活性依赖性突触塑性的诱导的核心;然而,该描述不考虑内质网(ER)CA 2+商店的潜在贡献。 ER在Ca1树突脊柱中具有异质分布,并且可以在突触之间引入突出之间的局部功能差异,如代谢受体依赖性长期抑郁症的实验所提出的。 CA3-CA1兴奋性突触在Ca 2+动态的生理学上详细的计算模型表征了塑性感应方案期间通过代表格信号传导的脊柱ER的贡献。通过IP 3受体释放的ER Ca 2+释放以分级方式调节NMDA受体依赖性可塑性,以选择性地促进LTP诱导效果相对减弱的突触抑制;这可能在更优选与含ER血管相关的更强的突起处的脾气进一步强化。因此,获取脊柱ER可以代表局部的具有局部的CA1突触处的局部生物物质上的“沟槽塑料开关”,有助于神经电路中的可塑性 - 稳定性平衡。摘要由NMDA受体介导的摘要长期可塑性支持在海马兴奋性CA3-CA1连接中的投入特定的Hebbian学习。存在另外的稳定机制,其在全球以及局部地在多个时间尺度上行动,以确保以受约束的方式发生塑性。在这里,我们研究了钙(Ca 2+)储存与内质网(ER)相关的作用在局部CA1突触的局部调节中。我们的研究被(1)令人讨厌的观察结果,即ER稀疏地分布在树突刺中,但在较大的刺脊柱上以较大的刺脊椎作出依赖于活性加强,以及(2)突触的证据表明ER运动能力可以快速,伴随活动调节的脊柱重塑。我们构建了一个生理学上的Er-轴承CA1脊柱的计算模型,并检查了IP 3 -sissitive CA 2+在活动模式期间如何影响脊柱CA 2+动态,这些模式模仿长期增强和长期抑郁(LTD )。我们的研究结果表明,ER的存在以渐进的方式调节NMDA受体依赖性可塑性,从而选择性地增强LTD诱导。我们建议ER可以在本地调整CA 2+基础的可塑性,提供制动机制,以减轻突变的突变处的失控。我们的研究提供了突触后CA 2+调节的生物用理准确描述,并表明脊柱中的ER可以促进与饱和强度的海马突触的重用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号