...
首页> 外文期刊>The Journal of Physiology >Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum
【24h】

Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum

机译:使用光学泵浦磁力计测量人体小脑中的磁性肺信号

获取原文
获取原文并翻译 | 示例
           

摘要

Key points The application of conventional cryogenic magnetoencephalography (MEG) to the study of cerebellar functions is highly limited because typical cryogenic sensor arrays are far away from the cerebellum and naturalistic movement is not allowed in the recording. A new generation of MEG using optically pumped magnetometers (OPMs) that can be worn on the head during movement has opened up an opportunity to image the cerebellar electrophysiological activity non‐invasively. We use OPMs to record human cerebellar MEG signals elicited by air‐puff stimulation to the eye. We demonstrate robust responses in the cerebellum. OPMs pave the way for studying the neurophysiology of the human cerebellum. Abstract We test the feasibility of an optically pumped magnetometer‐based magnetoencephalographic (OP‐MEG) system for the measurement of human cerebellar activity. This is to our knowledge the first study investigating the human cerebellar electrophysiology using optically pumped magnetometers. As a proof of principle, we use an air‐puff stimulus to the eyeball in order to elicit cerebellar activity that is well characterized in non‐human models. In three subjects, we observe an evoked component at approx. 50?ms post‐stimulus, followed by a second component at approx. 85–115?ms post‐stimulus. Source inversion localizes both components in the cerebellum, while control experiments exclude potential sources elsewhere. We also assess the induced oscillations, with time‐frequency decompositions, and identify additional sources in the occipital lobe, a region expected to be active in our paradigm, and in the neck muscles. Neither of these contributes to the stimulus‐evoked responses at 50–115?ms. We conclude that OP‐MEG technology offers a promising way to advance the understanding of the information processing mechanisms in the human cerebellum.
机译:关键点常规低温磁性脑(MEG)在小脑功能的研究中的应用是高度限制的,因为典型的低温传感器阵列远离小脑,并且在记录中不允许进行自然运动。在运动期间使用光学泵浦磁力计(OPM)的新一代MEG已经打开了非侵入性地将小脑电生理活性图像进行图像的机会。我们使用OPM记录被呼吸刺激引发的人体小脑MEG信号。我们展示了在小脑中的强烈反应。 OPMS为研究人体小脑的神经生理学铺平了道路。摘要我们测试了光学泵送的磁力计的磁性肺(OP-MEG)系统进行人体小脑活性的可行性。这是我们了解使用光学泵浦磁力计研究人体小脑电生理学的第一研究。作为原则的证据,我们将空气粉扑刺激刺激到眼球中,以引发在非人类模型中具有很好的小脑活动。在三个主题中,我们观察大约诱发的组件。 50?MS后刺激后,其次是第二组分约。 85-115?MS后刺激。源反转定位在小脑中的两个组件,而控制实验则排除其他地方的潜在来源。我们还评估了诱导的振荡,时频分解,并识别枕叶中的额外来源,预期在我们的范式中有效的区域,颈部肌肉。这些都没有有助于在50-115的刺激诱发的反应?MS。我们得出结论,OP-MEG技术提供了一种有希望的方式来推进人体细胞信息处理机制的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号