...
首页> 外文期刊>The Journal of Chemical Physics >Estimating the intrinsic limit of the Feller-Peterson-Dixon composite approach when applied to adiabatic ionization potentials in atoms and small molecules
【24h】

Estimating the intrinsic limit of the Feller-Peterson-Dixon composite approach when applied to adiabatic ionization potentials in atoms and small molecules

机译:估算来自彼得森 - 迪克森复合方法的内在限制在原子和小分子中应用于绝热电离电势时

获取原文
获取原文并翻译 | 示例
           

摘要

Benchmark adiabatic ionization potentials were obtained with the Feller-Peterson-Dixon (FPD) theoretical method for a collection of 48 atoms and small molecules. In previous studies, the FPD method demonstrated an ability to predict atomization energies (heats of formation) and electron affinities well within a 95% confidence level of +/- 1 kcal/mol. Large 1-particle expansions involving correlation consistent basis sets (up to aug-cc-pV8Z in many cases and aug-cc-pV9Z for some atoms) were chosen for the valence CCSD(T) starting point calculations. Despite their cost, these large basis sets were chosen in order to help minimize the residual basis set truncation error and reduce dependence on approximate basis set limit extrapolation formulas. The complementary n-particle expansion included higher order CCSDT, CCSDTQ, or CCSDTQ5 (coupled cluster theory with iterative triple, quadruple, and quintuple excitations) corrections. For all of the chemical systems examined here, it was also possible to either perform explicit full configuration interaction (CI) calculations or to otherwise estimate the full CI limit. Additionally, corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, non-adiabatic effects, and other minor factors were considered. The root mean square deviation with respect to experiment for the ionization potentials was 0.21 kcal/mol (0.009 eV). The corresponding level of agreement for molecular enthalpies of formation was 0.37 kcal/mol and for electron affinities 0.20 kcal/mol. Similar good agreement with experiment was found in the case of molecular structures and harmonic frequencies. Overall, the combination of energetic, structural, and vibrational data (655 comparisons) reflects the consistent ability of the FPD method to achieve close agreement with experiment for small molecules using the level of theory applied in this study. Published by AIP Publishing.
机译:基准绝热电离电位是用FELLER-PETERSON-DIXON(FPD)的理论方法获得的48个原子和小分子的理论方法。在先前的研究中,FPD方法证明了预测雾化能量(形成热量)和电子亲和力在+/- 1千卡/摩尔的95%置信水平内的能力。选择了涉及相关性的大型1粒子扩展(在许多情况下,在许多情况下,对于某些原子的八月-CC-PV8Z)选择了价CCSD(T)起始点计算。尽管他们的成本,所以选择了这些大型基础集,以帮助最小化残余基础设定截断误差并减少对近似基础设定极限外推式的依赖性。互补的N粒子扩展包括更高的顺序CCSDT,CCSDTQ或CCSDTQ5(耦合群集理论,具有迭代三倍,四倍和Quintuple激发)校正。对于此处检查的所有化学系统,还可以执行明确的全配置交互(CI)计算或以其他方式估计完整的CI限制。另外,考虑了与核心/价相关性,标量相对性,anharmonic零点振动能,非绝热效应和其他少量因子相关的校正。关于电离电位实验的根均方偏差为0.21kcal / mol(0.009eV)。相应的分子形成的成立水平为0.37kcal / mol,用于电子亲素0.20kcal / mol。在分子结构和谐波频率的情况下发现了与实验类似的良好一致性。总的来说,能量,结构和振动数据(655比较)的组合反映了FPD方法与使用本研究中应用的理论水平的小分子实验实现密切协议的一致能力。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号