...
首页> 外文期刊>The Journal of Chemical Physics >Investigation of DPD transport properties in modeling bioparticle motion under the effect of external forces: Low Reynolds number and high Schmidt scenarios
【24h】

Investigation of DPD transport properties in modeling bioparticle motion under the effect of external forces: Low Reynolds number and high Schmidt scenarios

机译:外力效应模拟生物粒子运动中DPD运输性能的研究:低雷诺数和高施密特情景

获取原文
获取原文并翻译 | 示例
           

摘要

We have used a dissipative particle dynamics (DPD) model to study the movement of microparticles in a microfluidic device at extremely low Reynolds number (Re). The particles, immersed in a medium, are transported in the microchannel by a flow force and deflected transversely by an external force along the way. An in-house Fortran code is developed to simulate a two-dimensional fluid flow using DPD at Re = 0.0005, which is two orders of magnitude less than the minimum Re value previously reported in the DPD literature. The DPD flow profile is verified by comparing it with the exact solution of Hagen-Poiseuille flow. A bioparticle based on a rigid spring-bead model is introduced in the DPD fluid, and the employed model is verified via comparing the velocity profile past a stationary infinite cylinder against the profile obtained via the finite element method. Moreover, the drag force and drag coefficient on the stationary cylinder are also computed and compared with the reported literature results. Dielectrophoresis (DEP) is investigated as a case study for the proposed DPD model to compute the trajectories of red blood cells in a microfluidic device. A mapping mechanism to scale the external deflecting force from the physical to DPD domain is performed. We designed and built our own experimental setup with the aim to compare the experimental trajectories of cells in a microfluidic device to validate our DPD model. These experimental results are used to investigate the dependence of the trajectory results on the Reynolds number and the Schmidt number. The numerical results agree well with the experiment results, and it is found that the Schmidt number is not a significant parameter for the current application; Reynolds numbers combined with the DEP-to-drag force ratio are the only important parameters influencing the behavior of particles inside the microchannel. Published under license by AIP Publishing.
机译:我们使用了耗散粒子动态(DPD)模型来研究微流体在微流体装置中的微粒在极低的雷诺数(RE)中的运动。浸入介质中的颗粒通过流量力在微通道中运输并通过沿外的外力横向偏转。开发了一个内部的FORTRAN代码以在RE> = 0.0005处使用DPD模拟二维流体流量,这是比DPD文献中先前报告的最小值的两个数量级。通过将其与Hagen-Poiseuille Flow的精确解决方案进行比较来验证DPD流动轮廓。在DPD流体中引入了基于刚性弹簧珠模型的生物颗粒,通过将速度曲线概况与经由有限元方法获得的轮廓进行比较来验证所采用的模型。此外,还计算了固定气缸上的拖动力和拖动系数,并与报告的文献结果进行了比较。研究了介电泳(DEP)作为提出的DPD模型的案例研究,以计算微流体装置中红细胞的轨迹。执行从物理到DPD域缩放外部偏转力的映射机制。我们设计并建造了自己的实验设置,旨在比较微流体装置中细胞的实验轨迹来验证我们的DPD模型。这些实验结果用于研究轨迹结果对雷诺数和施密特数的依赖性。数值结果与实验结果很好,并且发现施密特号不是目前应用的重要参数;与拖延力比相结合的雷诺数是影响微通道内部粒子行为的唯一重要参数。通过AIP发布在许可证下发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号