首页> 外文期刊>The Journal of Chemical Physics >Efficient geometric integrators for nonadiabatic quantum dynamics. I. The adiabatic representation
【24h】

Efficient geometric integrators for nonadiabatic quantum dynamics. I. The adiabatic representation

机译:高效的几何积分器,用于非等压量子动态。 I.绝热的代表

获取原文
获取原文并翻译 | 示例
           

摘要

Geometric integrators of the Schrodinger equation conserve exactly many invariants of the exact solution. Among these integrators, the split-operator algorithm is explicit and easy to implement but, unfortunately, is restricted to systems whose Hamiltonian is separable into kinetic and potential terms. Here, we describe several implicit geometric integrators applicable to both separable and nonseparable Hamiltonians and, in particular, to the nonadiabatic molecular Hamiltonian in the adiabatic representation. These integrators combine the dynamic Fourier method with the recursive symmetric composition of the trapezoidal rule or implicit midpoint method, which results in an arbitrary order of accuracy in the time step. Moreover, these integrators are exactly unitary, symplectic, symmetric, time-reversible, and stable and, in contrast to the split-operator algorithm, conserve energy exactly, regardless of the accuracy of the solution. The order of convergence and conservation of geometric properties are proven analytically and demonstrated numerically on a two-surface NaI model in the adiabatic representation. Although each step of the higher order integrators is more costly, these algorithms become the most efficient ones if higher accuracy is desired; a thousand-fold speedup compared to the second-order trapezoidal rule (the Crank-Nicolson method) was observed for a wavefunction convergence error of 10(-1)0. In a companion paper [J. Roulet, S. Choi, and J. Vanicek, J. Chem. Phys. 150,204113 ( 2019)], we discuss analogous, arbitrary-order compositions of the split-operator algorithm and apply both types of geometric integrators to a higher-dimensional system in the diabatic representation. (C) 2019 Author(s).
机译:薛定谔方程的几何积分节约精确解的正是许多变量。在这些集成商中,分割操作的算法是明确的,容易实现,但不幸的是,受限于它的哈密顿可分离成动能和势能方面的系统。在这里,我们描述了同时适用于可分离和不可分的汉密尔顿,特别是一些隐含的几何集成商,在绝热表示非绝热分子哈密顿。这些积分器与梯形规则的或隐含的中点方法的递归对称组合物,结合动态傅立叶方法,该方法导致准确性的在时间步骤任意顺序。此外,这些积分器是完全统一的,辛,对称的,时间可逆且稳定的和,相对于所述分割运算符算法,节约能源准确地说,无论该溶液的准确性。收敛性和几何性质的保护的顺序分析证实并在绝热表示的两表面的NaI模型数字证明。虽然较高阶积分器的每个步骤是更昂贵的,如果更高的精度期望这些算法成为最有效的那些;观察到的10(-1)0波函数收敛误差比第二阶梯形规则(曲柄Nicolson方法)一千倍的加速。在一个同伴的论文[J.鲁莱特,S.彩,和J. Vanicek,J.化学。物理。 150,204113(2019)],我们讨论了分裂操作算法的类似的,任意顺序的组合物和在非绝热表示应用这两种类型的几何积分到更高维系统。 (c)2019年作者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号