...
首页> 外文期刊>The Journal of Chemical Physics >Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method
【24h】

Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method

机译:粗晶准古典轨迹法的构建。 II。 对直接分子模拟方法的比较

获取原文
获取原文并翻译 | 示例
           

摘要

This work presents the analysis of non-equilibrium energy transfer and dissociation of nitrogen molecules (N-2((1)Sigma(+)(g))) using two different approaches: the direct molecular simulation (DMS) method and the coarse-grain quasi-classical trajectory (CG-QCT) method. The two methods are used to study thermochemical relaxation in a zero-dimensional isochoric and isothermal reactor in which the nitrogen molecules are heated to several thousand degrees Kelvin, forcing the system into strong non-equilibrium. The analysis considers thermochemical relaxation for temperatures ranging from 10 000 to 25 000 K. Both methods make use of the same potential energy surface for the N-2((1)Sigma(+)(g)) - N-2((1)Sigma(+)(g)) system taken from the NASA Ames quantum chemistry database. Within the CG-QCT method, the rovibrational energy levels of the electronic ground state of the nitrogen molecule are lumped into a reduced number of bins. Two different grouping strategies are used: the more conventional vibrational-based grouping, widely used in the literature, and energy-based grouping. The analysis of both the internal state populations and concentration profiles show excellent agreement between the energy-based grouping and the DMS solutions. During the energy transfer process, discrepancies arise between the energy-based grouping and DMS solution due to the increased importance of mode separation for low energy states. By contrast, the vibrational grouping, traditionally considered state-of-the-art, captures well the behavior of the energy relaxation but fails to consistently predict the dissociation process. The deficiency of the vibrational grouping model is due to the assumption of strict mode separation and equilibrium of rotational energy states. These assumptions result in errors predicting the energy contribution to dissociation from the rotational and vibrational modes, with rotational energy actually contributing 30%-40% of the energy required to dissociate a molecule.
机译:这项工作提出的氮分子的非平衡能量传输和离解的分析(N-2((1)西格玛(+)(克))),使用两种不同的方法:直接分子模拟(DMS)方法和粗调粒准经典轨迹(CG-QCT)方法。这两种方法被用于研究热松弛在其中氮分子被加热到几千开氏度零维等容和等温反应器,强制系统进入强非平衡。分析认为热松弛的温度范围从10到000 25 000 K.这两种方法利用的N-2((1)西格玛(+)(克))相同的势能面 - N-2((1 )西格玛(+)(克))从NASA埃姆斯量子化学数据库采取系统。内的CG-QCT的方法,所述氮分子的电子基态的振转能级集中到仓的数量减少。两种不同的分组策略用于:较以往的振动为基础的分组,广泛使用在文献中,和基于能量的分组。内部状态的人口和浓度分布两者的分析表明基于能量的分组和DMS解决方案非常一致。时的能量转移过程中,差异的分组基于能量的和DMS溶液之间由于模式分离的低能量状态的增加的重要性产生。相比之下,振动分组,传统上被视为国家的最先进的,捕获以及能量松弛的行为,但未能持续预测分解过程。振动分组模型的缺乏是由于旋转能量状态的严格模式分离和平衡的假设。这些假设导致错误预测从转动和振动模式,以解离的能量贡献,与旋转能量实际上贡献30%-40%的能量需要解离的分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号