...
首页> 外文期刊>The Journal of Chemical Physics >Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas
【24h】

Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas

机译:致密碳 - 氢等离离子体的路径整体蒙特卡罗模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon-hydrogen plasmas and hydrocarbon materials are of broad interest to laser shock experimentalists, high energy density physicists, and astrophysicists. Accurate equations of state (EOSs) of hydrocarbons are valuable for various studies from inertial confinement fusion to planetary science. By combining path integral Monte Carlo (PIMC) results at high temperatures and density functional theory molecular dynamics results at lower temperatures, we compute the EOSs for hydrocarbons from simulations performed at 1473 separate (rho, T)-points distributed over a range of compositions. These methods accurately treat electronic excitation effects with neither adjustable parameter nor experimental input. PIMC is also an accurate simulation method that is capable of treating many-body interaction and nuclear quantum effects at finite temperatures. These methods therefore provide a benchmark-quality EOS that surpasses that of semi-empirical and Thomas-Fermi-based methods in the warm dense matter regime. By comparing our first-principles EOS to the LEOS 5112 model for CH, we validate the specific heat assumptions in this model but suggest that the Gruneisen parameter is too large at low temperatures. Based on our first-principles EOSs, we predict the principal Hugoniot curve of polystyrene to be 2%-5% softer at maximum shock compression than that predicted by orbital-free density functional theory and SESAME 7593. By investigating the atomic structure and chemical bonding of hydrocarbons, we show a drastic decrease in the lifetime of chemical bonds in the pressure interval from 0.4 to 4 megabar. We find the assumption of linear mixing to be valid for describing the EOS and the shock Hugoniot curve of hydrocarbons in the regime of partially ionized atomic liquids. We make predictions of the shock compression of glow-discharge polymers and investigate the effects of oxygen content and C:H ratio on its Hugoniot curve. Our full suite of first-principles simulation results may
机译:激光休克实验主义者,高能量密度物理学家和天体物理学家,碳 - 氢等离子体和烃材料具有广泛的兴趣。烃的准确方程式(EOSS)的烃类(EOSS)对于从惯性监禁融合到行星科学的各种研究是有价值的。通过组合路径整体蒙特卡罗(PIMC)结果在高温和密度函数理论的情况下,分子动力学导致较低的温度,我们将EOSS从在1473个分开的(RHO,T)点分布在一系列组合物上的分开(RHO,T)点来计算烃的烃类。这些方法既不准确地处理电子励磁效果,也不是可调参数也不是实验输入。 PIMC也是一种精确的仿真方法,能够在有限温度下处理许多身体相互作用和核量子效应。因此,这些方法提供了一种基准质量EOS,其在温暖的致密问题方案中超越了基于半经验和托马斯 - 费米的方法。通过我们的第一原则EOS比较的LEOS 5112型号为CH,我们验证了比热假设在这个模型中,但表明Gruneisen参数是在低温下过大。基于我们的第一原理eoss,我们预测聚苯乙烯的主要Hugoniot曲线,在最大冲击压缩时比通过无轨道密度函数理论和芝麻7593预测的最大冲击压缩2%-5%。通过调查原子结构和化学键合碳氢化合物,我们展示了从0.4至4兆瓦的压力间隔内的化学键寿命的急剧下降。我们发现线性混合的假设是有效的,用于描述部分电离原子液体制度中烃的EOS和Shock Hugoniot曲线。我们做出了对辉光放电聚合物的冲击压缩的预测,并研究了氧含量和C:H比在其Hugoniot曲线上的影响。我们完整的一批主要原则仿真结果可能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号