...
首页> 外文期刊>The Journal of Chemical Physics >Coupling of state-resolved rovibrational coarse-grain model for nitrogen to stochastic particle method for simulating internal energy excitation and dissociation
【24h】

Coupling of state-resolved rovibrational coarse-grain model for nitrogen to stochastic particle method for simulating internal energy excitation and dissociation

机译:氮气耦合氮氮与随机颗粒法模拟内能激励和解离的转型粒子模型

获取原文
获取原文并翻译 | 示例
           

摘要

We propose to couple a state-resolved rovibrational coarse-grain model to a stochastic particle method for simulating internal energy excitation and dissociation of a molecular gas. A coarse-grained model for a rovibrational reaction mechanism of an ab initio database developed at the NASA Ames Research Center for the N-2-N system is modified based on variably spaced energy bins. The thermodynamic properties of the modified coarse-grained model allow us to closely match those obtained with the full set of rovibrational levels over a wide temperature range, while using a number of bins significantly smaller than the complete mechanism. The chemical-kinetic behavior of equally and variably spaced bin formulations is compared by simulating internal energy excitation and dissociation of nitrogen in an adiabatic, isochoric reactor. We find that the variably spaced formulation is better suited for reproducing the dynamics of the full database at conditions of interest in the Earth atmospheric entry. Also in this paper, we discuss the details of our particle method implementation for the uniform rovibrational collisional bin model and describe changes to the Direct Simulation Monte Carlo (DSMC) collision algorithm, which become necessary to accommodate our state-resolved reaction mechanism for excitation and dissociation reactions. The DSMC code is then verified against equivalent master equation calculations. In these simulations, state-resolved cross sections are used in analytical form. These cross sections verify micro-reversibility relations for the rovibrational bins and allow for fast execution of the DSMC code. In our verification calculations, we obtain very close agreement for the concentrations profiles of N and N-2, as well as the translational and rovibrational mode temperatures obtained independently through both methods. In addition to macroscopic moments, we compare discrete internal energy populations predicted at selected time steps via DSMC and the maste
机译:我们建议以耦合的状态下分辨振转粗粒模型到一个随机微粒方法用于模拟分子气体的内部能量激发和离解。对于Ab的数据库算在NASA Ames研究中心N-2-N系统开发出了振转反应机理粗粒模型被修改基于可变地间隔开的能量仓。修改后的粗粒模型的热力学性质允许我们紧密匹配与全套在宽的温度范围内振转水平获得的那些,同时使用多个容器的比完整机构显著小。同样地且可变地间隔开仓制剂的化学动力学行为是由在绝热,等容反应器模拟内部能量激发和氮的离解进行比较。我们发现,可变间隔配方更适合于在地球进入大气层的兴趣条件再现完整的数据库的动态。此外,在本文中,我们讨论了我们的粒子的方法实现的细节统一振转碰撞箱模型,并介绍对直接模拟蒙特卡洛(DSMC)碰撞算法,它成为必要,以适应我们的激发态分辨的反应机制,分解反应。该DSMC代码,然后针对相当于主方程计算验证。在这些模拟中,状态分辨截面以解析形式使用。这些横截面验证的振转箱微可逆性关系,并允许DSMC代码的快速执行。在我们的验证计算,我们得到的N和N-2的浓度曲线,以及通过这两种方法获得独立的平移和振转模式温度非常接近达成协议。除了宏观的时刻,我们比较在经由DSMC和大师选择的时间步长的预测离散的内部能量种群

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号