首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Systematic modeling approach for analyzing the powder flow and powder energy absorptivity in direct energy deposition system
【24h】

Systematic modeling approach for analyzing the powder flow and powder energy absorptivity in direct energy deposition system

机译:用于分析直接能量沉积系统粉末流量和粉末能量吸收率的系统建模方法

获取原文
获取原文并翻译 | 示例
           

摘要

Additive manufacturing techniques such as direct energy deposition (DED) have many advantages over traditional subtractive manufacturing technologies. However, the phenomena associated with the DED process, including the absorption and scattering of the laser radiation in the powder concentration region and substrate, thermal conduction, the formation and solidification of the melt pool, and so on, are extremely complex. As a result, it is difficult to determine the individual effects of the processing parameters on the quality of the final DED parts using experimental methods. Accordingly, the present study proposes a systematic approach for calculating the absorptivity of the laser radiation in the DED process. In the proposed approach, Computational fluid dynamics (CFD) simulations are first performed to establish the dimensions and location of the powder concentration region. The powder mass distribution and number of particles in the concentration region are then attained via self-written MATLAB code. Finally, Monte Carlo ray-tracing simulations are performed to calculate the total powder energy absorptivity of the concentration region. It is shown that the total absorptivity of the whole system, including the substrate region and the powder particles, is in good agreement with the published experimental results. The effects of the powder mass flow rate and powder-gas flow rate on the average absorptivity of the metal powder and substrate are explored. It is shown that the powder energy absorptivity increases with an increasing powder feeding rate, but is insensitive to the powder-gas flow rate. Overall, the results presented in this study provide a useful insight into the initial thermal and state conditions of the powder particles entering the melt pool. As such, the proposed modeling approach plays an important role in performing high-fidelity numerical simulations of the DED process.
机译:诸如直接能量沉积(DED)的添加剂制造技术具有与传统的减色制造技术相比的许多优点。然而,与DED方法相关的现象,包括在粉末浓度区域和基材中的激光辐射,热传导,熔体池的形成和凝固的吸收和散射,非常复杂。结果,难以使用实验方法确定加工参数对最终DED部件质量的个性效果。因此,本研究提出了一种用于计算DED过程中激光辐射的吸收率的系统方法。在所提出的方法中,首先进行计算流体动力学(CFD)模拟以建立粉末浓度区域的尺寸和位置。然后通过自我写的MATLAB码实现浓度区域中的粉末质量分布和粒子的数量。最后,进行蒙特卡罗射线跟踪模拟以计算浓度区域的总粉末能量吸收率。结果表明,与已公布的实验结果吻合良好的整个系统的总吸收率,包括衬底区域和粉末颗粒。探索了粉末质量流量和粉末气流率对金属粉末和基材的平均吸收率的影响。结果表明,粉末能量吸收率随着粉末进料速率的增加而增加,但对粉末气流速率不敏感。总的来说,本研究中提出的结果提供了对进入熔池池的粉末颗粒的初始热和状态条件的有用洞察。因此,所提出的建模方法在执行DED过程的高保真数值模拟方面起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号