首页> 外文期刊>Physical chemistry chemical physics: PCCP >Multi-step phase-cycling in a free-electron laser-powered pulsed electron paramagnetic resonance spectrometer
【24h】

Multi-step phase-cycling in a free-electron laser-powered pulsed electron paramagnetic resonance spectrometer

机译:自由电子激光动力脉冲电子顺磁共振谱仪中的多步相循环

获取原文
获取原文并翻译 | 示例
           

摘要

Electron paramagnetic resonance (EPR) is a powerful tool for research in chemistry, biology, physics and materials science, which can benefit significantly from moving to frequencies above 100 GHz. In pulsed EPR spectrometers driven by powerful sub-THz oscillators, such as the free electron laser (FEL)-powered EPR spectrometer at UCSB, control of the duration, power and relative phases of the pulses in a sequence must be performed at the frequency and power level of the oscillator. Here we report on the implementation of an all-quasioptical four-step phase cycling procedure carried out directly at the kW power level of the 240 GHz pulses used in the FEL-powered EPR spectrometer. Phase shifts are introduced by modifying the optical path length of a 240 GHz pulse with precision-machined dielectric plates in a procedure we call phase cycling with optomechanical phase shifters (POPS), while numerical receiver phase cycling is implemented in post-processing. The POPS scheme was successfully used to reduce experimental dead times, enabling pulsed EPR of fast-relaxing spin systems such as gadolinium complexes at temperatures above 190 K. Coherence transfer pathway selection with POPS was used to perform spin echo relaxation experiments to measure the phase memory time of P1 centers in diamond in the presence of a strong unwanted FID signal in the background. The large excitation bandwidth of FEL-EPR, together with phase cycling, enabled the quantitative measurement of instantaneous electron spectral diffusion, from which the P1 center concentration was estimated to within 10%. Finally, phase cycling enabled saturation-recovery measurements of T-1 in a trityl-water solution at room temperature - the first FEL-EPR measurement of electron T-1.
机译:电子顺磁共振(EPR)是化学,生物学,物理和材料科学研究的强大工具,可以从100 GHz高于100 GHz的频率下显着受益。在由强大的子THZ振荡器驱动的脉冲EPR光谱仪中,例如自由电子激光器(FEL)-Powered的EPR光谱仪在UCSB时,必须在频率下执行序列中脉冲的持续时间,功率和相对阶段的控制振荡器的功率电平。在这里,我们报告了直接在Fel-Powered EPR光谱仪中使用的240 GHz脉冲的KW功率电平进行的全拟光学四步相循环过程的实施。通过用精密加工的电介质板在我们呼叫光学力学相移器(POPS)的过程中通过精密加工的电介质板改变240GHz脉冲的光路长度来引入相移长度,而数值接收器相循环在后处理中实现。 POPS方案已成功地用于减少实验死亡时间,使得快速松弛的旋转系统的脉冲EPR,例如在190K以上温度下的钆复合物。使用POP的相干转移途径选择来进行旋转回波松弛实验以测量相位存储器在背景中存在强烈的不需要的FID信号的钻石中P1中心的时间。 FEL-EPR的大激发带宽与相循环一起使得能够定量测量瞬时电子光谱扩散,将P1中心浓度估计到10%以内。最后,在室温下的TRITYL-水溶液中的T-1在T-1中的相位循环恢复测量 - 电子T-1的第一FEL-EPR测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号