...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives
【24h】

Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives

机译:纳米铝化炸药热分解的反应性分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Aluminized explosives have important applications in civil construction and military armaments, but their thermal decomposition mechanisms are not well characterized. Here, the thermal decomposition of TNT, RDX, HMX and CL-20 on Al nanoparticles is examined by reactive dynamics simulations using a newly parameterized reactive force field with low gradient correction (ReaxFF-lg). Partially passivated Al nanoparticles were constructed and mixed with TNT, RDX, HMX and CL-20 crystals and then the mixed systems are heated to a high temperature in which the explosives are fully decomposed. The simulation results show that the aluminized explosives undergo three main steps of thermal decomposition, which were denoted adsorption period (0-20 ps), diffusion period (20-80 ps) and formation period (80-210 ps). These stages in sequence are the chemical adsorption between Al and surrounding explosive molecules (R-NO2-Al bonding), the decomposition of the explosives and the diffusion of O atoms into the Al nanoparticles, and the formation of final products. In the first stage, the Al nanoparticles decrease the decomposition reaction barriers of RDX (1.90 kJ g(-1)), HMX (1.95 kJ g(-1)) and CL-20 (1.18 kJ g(-1)), respectively, and decrease the decomposition reaction barrier of TNT from 2.99 to 0.29 kJ g(-1). Comparing with the crystalline RDX, HMX and CL-20, the energy releases are increased by 4.73-4.96 kJ g(-1) in the second stage. The number of produced H2O molecules increased by 25.27-27.81% and the number of CO2 molecules decreased by 47.73-68.01% in the third stage. These three stages are further confirmed by the evolutive diagram of the structure and temperature distribution for the CL-20/Al system. The onset temperatures (T-o) of generating H2O for all the aluminized explosives decrease, while those of generating CO2 for aluminized HMX and CL-20 increase, which are in accord with the experiment of aluminized RDX.
机译:铝化炸药在民用建设和军用军备中具有重要应用,但它们的热分解机制并不具备很好的特征。这里,通过使用具有低梯度校正(ReaxFF-LG)的新参数化反应力场,通过反应动力学模拟检查TNT,RDX,HMX和CL-20的热分解。将部分钝化的Al纳米颗粒构建并与TNT,RDX,HMX和Cl-20晶体混合,然后将混合体系加热至高温,其中爆炸物完全分解。仿真结果表明,铝化炸药经过三个热分解的主要步骤,其表示吸附周期(0-20 ps),扩散周期(20-80 ps)和地层期(80-210 ps)。这些阶段依次是Al和周围爆炸分子(R-NO2-Al键合)的化学吸附,炸药分解和O原子的扩散到Al纳米粒子中,以及最终产物的形成。在第一阶段,Al纳米颗粒分别降低RDx的分解反应屏障(1.90kJg(-1)),HMX(1.95kJg(-1))和Cl-20(1.18kJ g(-1)) ,将TNT的分解反应屏障降低到2.99至0.29kJg(-1)。与结晶RDX,HMX和CL-20相比,第二阶段中的能量释放增加了4.73-4.96kJg(-1)。产生的H2O分子的数量增加25.27-27.81%,第三阶段的二氧化碳分子的数量下降47.73-68.01%。通过CL-20 / Al系统的结构和温度分布的演进图进一步证实了这三个阶段。为所有铝化炸药产生H2O的发病温度(T-O)降低,而产生CO 2的铝化HMX和CL-20增加,这与铝化RDX的实验一致。

著录项

  • 来源
  • 作者单位

    Nanjing Univ Sci &

    Technol Sch Chem Engn MOE Key Lab Soft Chem &

    Funct Mat Nanjing 210094 Jiangsu Peoples R China;

    Univ Nevada Reno Dept Chem &

    Mat Engn Reno NV 89577 USA;

    Xian Modern Chem Res Inst Lab Sci &

    Technol Combust &

    Explos Xian 710065 Shaanxi Peoples R China;

    Xian Modern Chem Res Inst Lab Sci &

    Technol Combust &

    Explos Xian 710065 Shaanxi Peoples R China;

    Nanjing Univ Sci &

    Technol Sch Chem Engn MOE Key Lab Soft Chem &

    Funct Mat Nanjing 210094 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号