...
首页> 外文期刊>RSC Advances >Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)(3) solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer
【24h】

Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)(3) solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer

机译:鼻梁型Li1.3Al0.3TI1.7(PO4)(3)固体电解质及其在锂离子电池中提高锂离子电池的循环性能的应用,通过引入一种人工Li3PO4 Sei层

获取原文
获取原文并翻译 | 示例
           

摘要

The pure Li1.3Al0.3Ti1.7(PO4)(3) (LATP) ceramic powders with uniform distribution have been successfully synthesized with CO(NH2)(2) as a molten flux at a relatively lower temperature compared to conventional methods. The influences of the molar ratio of molten CO(NH2)(2) to reaction precursor, calcination temperature for the LATP powders and the sintering temperature for the LATP pellets are investigated; the pellet with the highest total conductivity of 7.02 x 10(-4) S cm(-1) at room temperature is obtained. In addition, in view of the instability between LATP and metallic lithium, we introduce an artificial Li3PO4 SEI (solid electrolyte interphase) layer to block the contacts between them. The results of galvanostatic charge-discharge measurement show that the as-assembled battery delivers an excellent capacity retention ratio of 95.2% at 0.1C rate after 50 cycles, which is much higher than untreated samples. We conclude that adding an artificial Li3PO4 SEI layer is an effective way to improve the electrochemical property of solid state lithium ion batteries (LIBs) with LATP as an electrolyte.
机译:与常规方法相比,已成功地合成具有均匀分布的纯Li1.3Al0.3Ti1.7(PO4)(3)(Latp)陶瓷粉末,作为熔融通量,以相对较低的温度成功地合成。研究了熔融CO(NH2)(2)与反应前体,LATP粉末煅烧温度以及LATP粒料的烧结温度的影响;获得室温下具有7.02×10(-4)厘米(-1)的最高总电导率的颗粒。此外,鉴于LATP和金属锂之间的不稳定性,我们引入了一种人工Li3PO4 Sei(固体电解质相互相互相位)层以阻挡它们之间的触点。电镀电荷放电测量结果表明,50次循环后,组装电池在0.1C速率下以0.1℃的速率提供95.2%的优异容量保持比率远高于未处理的样品。我们得出结论,添加人工Li3PO4 SEI层是改善用LATP作为电解质的固态锂离子电池(LIBS)的电化学性能的有效方法。

著录项

  • 来源
    《RSC Advances》 |2017年第74期|共8页
  • 作者单位

    Tianjin Univ Sch Chem &

    Engn Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Chem &

    Engn Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Chem &

    Engn Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Chem &

    Engn Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Chem &

    Engn Tianjin 300072 Peoples R China;

    Tianjin Inst Power Sources Natl Key Lab Power Sources Tianjin 300384 Peoples R China;

    Tianjin Inst Power Sources Natl Key Lab Power Sources Tianjin 300384 Peoples R China;

    Tianjin Inst Power Sources Natl Key Lab Power Sources Tianjin 300384 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号