...
首页> 外文期刊>RSC Advances >Influence of magnetic field on morphological structures and physiological characteristics of bEnd.3 cells cultured on polypyrrole substrates
【24h】

Influence of magnetic field on morphological structures and physiological characteristics of bEnd.3 cells cultured on polypyrrole substrates

机译:磁场对聚吡咯基材培养的弯曲的形态结构和生理特性

获取原文
获取原文并翻译 | 示例
           

摘要

This paper employs a spin-coated method to construct conductive polypyrrole (PPy) substrates which present superior properties for controlling the morphological structures and functions of bEnd.3 cells. The PPy substrates with a homogeneous particle size, uniform distribution and proper roughness show enhanced hydrophilic characteristics and improve cell adhesion to the substrates. The changes in the mechanical properties of cells and the responses to the designed substrates and magnetic field are also explored. Due to the synergistic effect between the magnetic field and the conductive PPy substrate, the cells cultured in such an environment exhibit applanate shapes with more branches and enhanced cell viability. In addition, the cells preferentially extend along the magnetic field direction. The mechanical characteristics of cells change significantly under varying magnetic intensity stimulations (5-16 mT). The satisfying effect on cells' morphology and outgrowth is acquired at the magnetic intensities of 9-10 mT and duration of 20 min, compared with other stimulated groups, while retaining cell viability. Moreover, the cells express higher adhesion up to 5.2 nN. The results suggest that the application of the PPy substrates and magnetic field is a promising candidate for the protection of neurovascular units and treatment of neurological diseases.
机译:本文采用旋涂的方法来构建导电聚吡咯(PPY)底物,其具有用于控制弯曲的形态结构和功能的优异性质。具有均匀粒度的PPY底物,均匀的分布和适当的粗糙度显示出增强的亲水性特性,并改善对基材的细胞粘附性。还探讨了电池机械性能的变化以及对设计的基板和磁场的响应。由于磁场和导电PPY衬底之间的协同效应,在这种环境中培养的细胞表现出具有更多分支和增强的细胞活力的涂层形状。另外,细胞优先沿磁场方向延伸。细胞的机械特性在不同的磁强度刺激下显着变化(5-16英吨)。与其他刺激的基团相比,在9-10 mt的磁性强度和20分钟的持续时间内获得对细胞的致敏感性和生长的令人满意的影响。此外,细胞高达5.2 nn的粘附性更高。结果表明,PPY基材和磁场的应用是保护神经血管单元和神经疾病治疗的有希望的候选者。

著录项

  • 来源
    《RSC Advances》 |2019年第70期|共8页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号