首页> 外文期刊>Nanotechnology >Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates
【24h】

Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates

机译:刚性高度柔性基板上的无氧有机光伏电池等离子体纳米结构电极的设计与开发

获取原文
获取原文并翻译 | 示例
           

摘要

Indium tin oxide (ITO) is the most common transparent electrode used in organic photovoltaics (OPVs), yet limited indium reserves and poor mechanical properties make it non-ideal for large-scale OPV production. To replace ITO, we designed, fabricated, and deployed plasmonic nanostructured electrodes in inverted OPV devices. We found that active layer absorption is significantly impacted by ZnO thickness which affects the optical field distribution inside the resonant cavity formed between the plasmonic nanostructured electrode and top electrode. High quality Cr/Au nanostructured electrodes were fabricated by nanoimprint lithography and deployed in ITO-free inverted devices on glass. Devices with thinner ZnO showed a PCE as high as 5.70% and higher J(SC)'s than devices on thicker ZnO, in agreement with finite-difference time-domain simulations. In addition, as the active layer was made optically thin, ITO-based devices showed diminished J(SC) while the resonant cavity effect from plasmonic nanostructured electrodes retained J(SC). Preliminary ITO-free, flexible devices on PET showed a PCE of 1.82% and those fabricated on ultrathin and conformable Parylene substrates yielded an initial PCE over 1%. The plasmonic electrodes and device designs in this work show promise for developing highly functioning conformable devices that can be applied to numerous needs for lightweight, ubiquitous power generation.
机译:氧化铟锡(ITO)是有机光伏(OPV)中使用的最常见的透明电极,但铟储量有限,机械性能差使其成为大型OPV生产的非理想。更换ITO,我们设计,制造和展开了倒置OPV器件中的等离子体纳米结构电极。我们发现,有源层吸收显着受ZnO厚度的影响,这影响了在等离子体纳米结构和顶部电极之间形成的谐振腔内的光场分布。通过纳米压印光刻制造高质量的Cr / Au纳米结构电极,并在玻璃上展开在ITO的倒置器件中。具有较薄ZnO的设备显示PCE,比ZnO更厚的ZnO高达5.70%和更高的J(SC),同时有限差分时间域模拟。另外,由于光学薄的有源层,基于ITO的器件显示出J(SC)的减少,而来自等离子体纳米结构电极的谐振腔效应保持J(SC)。 PET上的初步ITO无ITO,柔性器件显示为1.82%的PCE,在超薄和适形的聚对二甲苯基质上制造的PCE产生初始PCE,超过1%。这项工作中的等离子体电极和装置设计表明,用于开发高功率的可适应性的装置,可以应用于许多需求的轻质,无处不在的发电。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号