...
首页> 外文期刊>Nanotechnology >Bifunctional oxygen evolution and supercapacitor electrode with integrated architecture of NiFe-layered double hydroxides and hierarchical carbon framework
【24h】

Bifunctional oxygen evolution and supercapacitor electrode with integrated architecture of NiFe-layered double hydroxides and hierarchical carbon framework

机译:具有NiFe层双氢氧化物综合建筑的双官能氧气演化和超级电容电极及等级碳框架

获取原文
获取原文并翻译 | 示例
           

摘要

Layered double hydroxide with exchangeable interlayer anions are considered promising electro-active materials for renewable energy technologies. However, the limited exposure of active sites and poor electrical conductivity of hydroxide powder restrict its application. Herein, bifunctional integrated electrode with a 3D hierarchical carbon framework decorated by nickel iron-layered double hydroxides (NiFe-LDH) is developed. A conductive carbon nanowire array is introduced not only to provide enough anchoring sites for the hydroxide, but also affords a continuous pathway for electron transport throughout the entire electrode. The 3D integrated architecture of NiFe-hydroxide and hierarchical carbon framework possesses several beneficial effects including large electrochemical active surfaces, fast electron/mass transport, and enhanced mechanical stability. The as-prepared electrode affords a current density of 10 mA cm(-2) at a low overpotential of 269 mV for oxygen evolution reaction (OER) in 1 M of KOH. It also offers excellent stability with negligible current decline even after 2000 cycles. Besides, density functional theory calculations revealed that the (110) surface of NiFe-LDH is more active than the (003) surface for OER. Furthermore, the electrode possesses promising application prospects in alkaline battery-supercapacitor hybrid devices with a capacity of 178.8 mAh g(-1) (capacitance of 1609.6 F g(-1)) at a current density of 0.2 A g(-1). The viability of the as-prepared bifunctional electrode will provide a potential solution for wearable electronics in the near future.
机译:具有可交换式层间阴离子的层状双氢氧化物被认为是可再生能源技术的有希望的电活性材料。然而,活性位点的有限暴露和氢氧化物粉末导电性差的限制其应用。在此,开发了具有由镍铁层双氢氧化镍(NiFe-LDH)装饰的3D层级碳框架的双功能集成电电极。引入导电碳纳米线阵列不仅提供足够的锚固位点,而且还为整个电极提供了用于电子传输的连续途径。 NiFe-氢氧化物和分层碳框架的3D综合结构具有几种有益效果,包括大型电化学有源表面,快速电子/质量传输和增强的机械稳定性。在1M的KOH中,如制备的电极在269mV的低过电位下提供10mA cm(-2)的电流密度为269mV。它还具有出色的稳定性,即使在2000年循环之后,即使在2000年循环中也会忽略不计。此外,密度函数理论计算显示NiFe-LDH的(110)表面比Oer的(003)表面更有效。此外,电极在碱性电池超级电容器混合装置中具有承诺的应用前景,其容量为178.8mahg(-1)(电容为1609.6 f g(-1)),电流密度为0.2ag(-1)。制备的双功能电极的可行性将在不久的将来为可穿戴电子设备提供潜在的解决方案。

著录项

  • 来源
    《Nanotechnology》 |2019年第32期|共12页
  • 作者单位

    Yangtze Normal Univ Sch Chem &

    Chem Engn Chongqing 408100 Peoples R China;

    Chongqing Univ CQU NUS Renewable Energy Mat &

    Devices Joint Lab Sch Energy &

    Power Engn MOE Key Lab Low Grade Energy Utilizat Technol &

    S Chongqing 400044 Peoples R China;

    Xiamen Univ Technol Sch Mat Sci &

    Engn Fujian Prov Key Lab Funct Mat &

    Applicat Xiamen 361021 Peoples R China;

    Natl Univ Singapore Dept Mat Sci &

    Engn Singapore 117573 Singapore;

    Natl Univ Singapore Temasek Labs Singapore 117411 Singapore;

    Chongqing Univ CQU NUS Renewable Energy Mat &

    Devices Joint Lab Sch Energy &

    Power Engn MOE Key Lab Low Grade Energy Utilizat Technol &

    S Chongqing 400044 Peoples R China;

    Charles Univ Prague Fac Sci Dept Phys &

    Macromol Chem Prague 12843 2 Czech Republic;

    Chongqing Univ CQU NUS Renewable Energy Mat &

    Devices Joint Lab Sch Energy &

    Power Engn MOE Key Lab Low Grade Energy Utilizat Technol &

    S Chongqing 400044 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    bifunctional; flexible electrode; layered double hydroxides; DFT; integrated electrode; OER;

    机译:双功能;柔性电极;层状双氢氧化物;DFT;集成电电极;oer;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号