首页> 外文期刊>Medical Physics >WE‐H‐BRA‐07: Mechanistic Modelling of the Relative Biological Effectiveness of Heavy Charged Particles
【24h】

WE‐H‐BRA‐07: Mechanistic Modelling of the Relative Biological Effectiveness of Heavy Charged Particles

机译:WE-H-BRA-07:重型带电粒子相对生物效能的机械模型

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose Uncertainty in the Relative Biological Effectiveness (RBE) of heavy charged particles compared to photons remains one of the major uncertainties in particle therapy. As RBEs depend strongly on clinical variables such as tissue type, dose, and radiation quality, more accurate individualised models are needed to fully optimise treatments. MethodsWe have developed a model of DNA damage and repair following X‐ray irradiation in a number of settings, incorporating mechanistic descriptions of DNA repair pathways, geometric effects on DNA repair, cell cycle effects and cell death. Our model has previously been shown to accurately predict a range of biological endpoints including chromosome aberrations, mutations, and cell death. This model was combined with nanodosimetric models of individual ion tracks to calculate the additional probability of lethal damage forming within a single track. These lethal damage probabilities can be used to predict survival and RBE for cells irradiated with ions of different Linear Energy Transfer (LET). ResultsBy combining the X‐ray response model with nanodosimetry information, predictions of RBE can be made without cell‐line specific fitting. The model's RBE predictions were found to agree well with empirical proton RBE models (Mean absolute difference between models of 1.9% and 1.8% for cells with α/β ratios of 9 and 1.4, respectively, for LETs between 0 and 15 keV/μm). The model also accurately recovers the impact of high‐LET carbon ion exposures, showing both the reduced efficacy of ions at extremely high LET, as well as the impact of defects in non‐homologous end joining on RBE values in Chinese Hamster Ovary cells.ConclusionOur model is predicts RBE without the inclusion of empirical LET fitting parameters for a range of experimental conditions. This approach has the potential to deliver improved personalisation of particle therapy, with future developments allowing for the calculation of individualised RBEs. SJM is supported by a Marie Curie International Outgoing Fellowship from the European Commission's FP7 program (EC FP7 MC‐IOF‐623630)
机译:与光子相比,重带颗粒的相对生物有效性(RBE)的目的不确定性仍然是颗粒疗法的主要不确定性之一。由于RBE依赖于临床变量,例如组织类型,剂量和辐射质量,因此需要更准确的个性化模型来充分优化治疗方法。方法网络已经开发了在许多设置中X射线照射后的DNA损伤和修复模型,包括DNA修复途径的机械描述,对DNA修复,细胞周期效应和细胞死亡的几何效果。我们以前证明我们的模型可以准确地预测一系列生物终点,包括染色体畸变,突变和细胞死亡。该模型与单个离子轨道的纳米模型模型相结合,以计算在单个轨道内形成致命损伤的额外概率。这些致命的损伤概率可用于预测与不同线性能量转移(Let)的离子照射的细胞的存活率和RBE。将X射线响应模型与纳米模型信息组合,可以在没有细胞线特定配件的情况下进行RBE的预测。发现模型的RBE预测与经验丰富的质子rbe模型(分别为9和1.4的α/β比的细胞的型号之间的型号之间的平均绝对差异为0至15keV /μm) 。该模型还准确地恢复了高含碳离子曝光的影响,显示了离子在极高的情况下降低的效果,以及在中国仓鼠卵巢细胞中的RBE值上的非同源终端的缺陷的影响.Conclusionour模型是预测RBE,而不是包含经验的允许拟合参数在一系列实验条件下。这种方法有可能提供改进的粒子疗法的个性化,未来的发展允许计算个体化rbes。 SJM由欧盟委员会FP7计划的Marie Curie国际外向奖学金支持(EC FP7 MC-IOF-623630)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号