...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Acoustic vibration induced high electromagnetic responses of Fe3O4 nano-hollow spheres in the THz regime
【24h】

Acoustic vibration induced high electromagnetic responses of Fe3O4 nano-hollow spheres in the THz regime

机译:太赫兹范围内的声振动引起Fe3O4纳米空心球的高电磁响应

获取原文
获取原文并翻译 | 示例
           

摘要

Herein, we investigate the origin of enhanced absorption and complex conductivity of magnetite (Fe3O4) nano-hollow spheres (NHSs) in contrast to its nanoparticles (NPs) configuration in the frequency range 0.4-2.0 THz. The maximum absorption for NHSs and NPs of the same average diameter (similar to 100 nm) are found to be 246.27 and 48.35 cm(-1) at 1.8 THz, respectively. A detailed study suggests that the multiple resonance peaks in the absorption spectra are due to low frequency acoustic vibrational phonon modes of Fe3O4 nanostructures. Moreover, we demonstrate that the magnitude of total absorption can be tailored by varying the shell thickness of NHSs. It is found to increase with increasing shell thickness, and attain a maximum value of 498.5 cm(-1) for the NHSs of average diameter 350 nm at 1.8 THz. The invariance of frequency dependent magnetic permeability points out that the absorption is basically due to dielectric loss instead of magnetic loss. The enhanced THz conductivity of Fe3O4 NHSs, as compared to NPs is described in light of thermally activated polaronic hopping which is found to increase with increasing THz absorption. Finally, the size dependent THz conductivity of NHSs confirms its sole dependence on the magnitude of THz absorptivity.
机译:在本文中,我们研究了磁铁矿(Fe3O4)纳米空心球(NHSs)在0.4-2.0 THz频率范围内的纳米颗粒(NPs)配置与之相比吸收增强和复电导率的起源。在1.8 THz频率下,具有相同平均直径(类似于100 nm)的NHS和NP的最大吸收分别为246.27和48.35 cm(-1)。一项详细的研究表明,吸收光谱中的多个共振峰是由于Fe3O4纳米结构的低频声振动声子模式引起的。此外,我们证明可以通过改变NHS的外壳厚度来调整总吸收量。发现它会随着壳厚度的增加而增加,并且在1.8 THz时,平均直径为350 nm的NHS的最大值达到498.5 cm(-1)。频率相关磁导率的不变性指出,吸收基本上是由于介电损耗而不是磁损耗。与NPs相比,Fe3O4 NHSs的THz电导率提高了,这是通过热激活极化跃变来描述的,发现它随THz吸收的增加而增加。最后,NHS的太赫兹电导率与尺寸有关,这证实了它唯一依赖于太赫兹吸收率的大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号