...
首页> 外文期刊>Journal of Materials Science >High-temperature thin-film calorimetry: A newly developed method applied to lithium ion battery materials
【24h】

High-temperature thin-film calorimetry: A newly developed method applied to lithium ion battery materials

机译:高温薄膜量热法:一种新开发的应用于锂离子电池材料的方法

获取原文
获取原文并翻译 | 示例
           

摘要

A thin-film calorimeter has been developed to investigate the thermodynamic properties of thin films including battery layer sequences. A new approach, i.e., the application of high-temperature stable piezoelectric resonators as highly sensitive planar temperature sensor, is chosen. Thin films with a thickness of several micrometers of the material of interest are deposited on the resonators. The production or consumption of latent heat by the active layer(s) results in temperature fluctuations with respect to surroundings, in our case the furnace in which the sensor is placed. The temperature fluctuations can be easily monitored in situ via changes of the resonance frequency of the resonator. This enables us to extract the temperature and time dependence of phase transformations as well as the associated enthalpies. To cover a temperature range from -20 to 1000 C, high-temperature stable piezoelectric langasite (La_3Ga_5SiO_(14)) resonators are applied. Initially, aluminum and tin layers are used to test the calorimeter. The temperature and enthalpy of the solid-liquid phase transformation agree well with the literature data. Further, the thermodynamic data of the battery materials to be used as cathode, solid electrolyte, and anode in lithium ion batteries are investigated by the newly developed method. The cathode materials Li(Ni_(0.8)Co_(0.15)Al_(0.05))O_(2-δ) (NCA) and LiMn_2O_(4-δ) (LMO) are amorphous after deposition and crystallize during heating. NCA shows this transformation at 455 C with an enthalpy of -4.8 J/g. LMO undergoes three phase transformations at 330, 410 and 600 C. They require initially an activation which is followed by an exothermic enthalpy. The associated energies (activation; enthalpy) are (+67.2; -50.2) J/g, (+29.3; -29.3) J/g, and (+20.4; -26.2) J/g, respectively. The solid electrolyte Li_(3.4)V_(0.6)Si_(0.4)O _(4-δ) (LVSO) shows no phase transformation up to its decomposition at about 220 C. The anode material molybdenum disulfide (MoS _2) exhibits a phase transformation at 480 C with an enthalpy of -183.2 J/g.
机译:已经开发出了一种薄膜热量计来研究包括电池层序列的薄膜的热力学性质。选择了一种新方法,即将高温稳定的压电谐振器用作高灵敏度的平面温度传感器。在谐振器上沉积厚度为几微米的感兴趣材料的薄膜。活性层的潜热的产生或消耗导致相对于周围环境的温度波动,在我们的情况下是放置传感器的熔炉。通过谐振器的谐振频率的变化,可以容易地就地监测温度波动。这使我们能够提取温度和时间相关的相变以及相关的焓。为了覆盖-20至1000 C的温度范围,应用了高温稳定的压电硅酸镧铁矿(La_3Ga_5SiO_(14))谐振器。最初,铝层和锡层用于测试量热仪。固液相转变的温度和焓与文献数据吻合良好。此外,通过新开发的方法研究了用作锂离子电池正极,固体电解质和负极的电池材料的热力学数据。正极材料Li(Ni_(0.8)Co_(0.15)Al_(0.05))O_(2-δ)(NCA)和LiMn_2O_(4-δ)(LMO)在沉积后为非晶态,并在加热过程中结晶。 NCA在455 C时显示出这种转变,焓为-4.8 J / g。 LMO在330、410和600 C下经历了三个相变。它们最初需要激活,然后放热焓。关联的能量(激活;焓)分别为(+67.2; -50.2)J / g,(+29.3; -29.3)J / g和(+20.4; -26.2)J / g。固态电解质Li_(3.4)V_(0.6)Si_(0.4)O _(4-δ)(LVSO)直到在约220℃下分解都没有相变。负极材料二硫化钼(MoS _2)呈现相态在480 C时具有-183.2 J / g的焓转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号