...
首页> 外文期刊>Journal of chromatography, A: Including electrophoresis and other separation methods >Use of response surface methodology to optimize the simultaneous separation of eight polycyclic aromatic hydrocarbons by capillary zone electrophoresis with laser-induced fluorescence detection
【24h】

Use of response surface methodology to optimize the simultaneous separation of eight polycyclic aromatic hydrocarbons by capillary zone electrophoresis with laser-induced fluorescence detection

机译:使用响应面方法优化通过毛细管区带电泳和激光诱导的荧光检测同时分离八种多环芳烃的方法

获取原文
获取原文并翻译 | 示例
           

摘要

Polycyclic aromatic hydrocarbons (PAHs) are among the most targeted contaminants by international regulatory institutions. There is thus a need for fast, selective and sensitive analytical methods to quantify these compounds at trace levels in complex samples. This article focuses on the optimization by means of an experimental design of a CE method with laser-induced fluorescence detection for the fast simultaneous separation of 8 heavy PAHs among food and environmental priority pollutants: benzo(a)pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(k)fluoranthene, and benzo(ghi)perylene. In this method, capillary zone electrophoresis with a mixture of an anionic sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and a neutral methyl-β-cyclodextrin (Me-β-CD) was used to separate PAHs, on the basis of their differential distribution between the two CDs. First, the factors most affecting PAH electrophoretic behavior were identified: SBE-β-CD and Me-β-CD concentrations and percentage of methanol added to the background electrolyte. Then, a response surface strategy using a central composite design was carried out to model the effects of the selected factors on the normalized migration times. To optimize the separation, desirability functions were applied on modeled responses: normalized migration time differences between peak end and peak start of two consecutive peaks, and overall analysis time. From the model, predicted optimum conditions were experimentally validated and full resolution of all 8 PAHs was achieved in less than 7. min using a borate buffer composed of 5.3. mM SBE-β-CD, 21.5. mM Me-β-CD and 10.3% MeOH. This CE separation method was successfully applied to real edible oil analysis.
机译:多环芳烃(PAH)是国际监管机构最关注的污染物之一。因此,需要快速,选择性和灵敏的分析方法来定量分析复杂样品中痕量的这些化合物。本文着重于通过CE方法的实验设计进行优化,该方法采用激光诱导荧光检测技术,用于快速同时分离食品和环境优先污染物中的8种重PAH:苯并(a),、苯并(a)蒽,苯,苯并(b)荧蒽,二苯并(a,h)蒽,茚并(1,2,3-cd),、苯并(k)荧蒽和苯并(ghi)ylene。在该方法中,基于阴离子磺丁基醚-β-环糊精(SBE-β-CD)和中性甲基-β-环糊精(Me-β-CD)的混合物的毛细管区带电泳用于分离PAHs。它们在两个CD之间的差异分布。首先,确定最影响PAH电泳行为的因素:SBE-β-CD和Me-β-CD浓度以及添加到背景电解质中的甲醇百分比。然后,使用中央复合设计进行了响应面策略,以模拟所选因素对归一化迁移时间的影响。为了优化分离效果,将期望函数应用于建模响应:两个连续峰的峰结束点与峰开始点之间的归一化迁移时间差以及总分析时间。从模型中,通过实验验证了预测的最佳条件,并使用5.3的硼酸盐缓冲液在不到7分钟的时间内实现了所有8种PAH的完全分离。 mMSBE-β-CD,21.5。 mMMe-β-CD和10.3%MeOH。该CE分离方法已成功应用于实际食用油分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号