首页> 外文期刊>The Journal of Urology >Scrotal pathology: An opportunity for innovative treatment and cost savings
【24h】

Scrotal pathology: An opportunity for innovative treatment and cost savings

机译:阴囊病理学:创新治疗和节省成本的机会

获取原文
获取原文并翻译 | 示例
           

摘要

Synthesis of a desired product can often be achieved via more than one metabolic pathway. Whether naturally evolved or synthetically engineered, these pathways often exhibit specific properties that are suitable for production under distinct conditions and host organisms. Synergy between pathways arises when the underlying pathway characteristics, such as reducing equivalent demand, ATP requirement, intermediate utilization, and cofactor preferences, are complementary to each other. Utilization of such pathways in combination leads to an increased metabolite productivity and/or yield compared to using each pathway alone. This work illustrates the principle of synergy between two different pathways for 1-propanol production in Escherichia coli. A model-guided design based on maximum theoretical yield calculations identified synergy of the native threonine pathway and the heterologous citramalate pathway in terms of production yield across all flux ratios between the two pathways. Characterization of the individual pathways by host gene deletions demonstrates their distinct metabolic characteristics: the necessity of TCA cycle for threonine pathway and the independence of TCA cycle for the citramalate pathway. The two pathways are also complementary in driving force demands. Production experiments verified the synergistic effects predicted by the yield model, in which the platform with dual pathway for 2-ketobutyrate synthesis achieved higher yield (0.15. g/g of glucose) and productivity (0.12. g/L/h) of 1-propanol than individual ones alone: the threonine pathway (0.09. g/g; 0.04. g/L/h) or the citramalate pathway (0.11. g/g; 0.04. g/L/h). Thus, incorporation of synergy into the design principle of metabolic engineering may improve the production yield and rate of the desired compound.
机译:所需产物的合成通常可以通过一种以上的代谢途径来实现。无论是自然进化还是人工合成,这些途径通常表现出适合在不同条件下和宿主生物中生产的特定特性。当基本的途径特征(例如降低当量需求,ATP需求,中间利用和辅助因子的偏好)相互补充时,就会在途径之间产生协同作用。与单独使用每种途径相比,组合使用这些途径可提高代谢产物的生产率和/或产量。这项工作说明了在大肠杆菌中生产1-丙醇的两种不同途径之间协同作用的原理。基于最大理论产量计算的模型指导设计确定了天然苏氨酸途径和异柠檬酸途径的协同作用,这是通过两个途径之间所有通量比的产量来确定的。通过宿主基因缺失对单个途径的表征证明了其独特的代谢特征:苏氨酸途径的TCA循环的必要性和柠檬醛途径的TCA循环的独立性。两条路径在驱动力需求方面也互补。生产实验验证了产量模型所预测的协同效应,其中双途径合成2-酮丁酸酯的平台获得了1-的更高产量(0.15。g / g葡萄糖)和生产率(0.12。g / L / h)丙醇比单独的丙醇途径高:苏氨酸途径(0.09。g / g; 0.04。g / L / h)或柠檬酸途径(0.11。g / g; 0.04。g / L / h)。因此,将协同作用纳入代谢工程的设计原理可以提高所需化合物的产量和产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号