...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Comparison of O-H, C-H, and C-O Bond Scission Sequence of Methanol on Tungsten Carbide Surfaces Modified by Ni, Rh, and Au
【24h】

Comparison of O-H, C-H, and C-O Bond Scission Sequence of Methanol on Tungsten Carbide Surfaces Modified by Ni, Rh, and Au

机译:Ni,Rh和Au修饰的碳化钨表面上甲醇的O-H,C-H和C-O键断裂序列的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Controlling the decomposition pathways of methanol is of significant importance to applications such as methanol reforming and direct methanol fuel cells. An understanding of the reaction of methanol on tungsten carbide (WC) and metal-modified C WC surfaces should provide useful input for the utilization of these materials as alternative catalysts for reforming and fuel cell applications. In this study, we have performed a combined theoretical and experimental investigation to determine how the O—H, C—H, and C—O bond scission pathways are affected by modifying WC surfaces with Ni, Rh, or Au. Density functional theory results show that the methoxy species bonds strongly on Rh/WC and Ni/WC and should lead to higher activity toward methanol decomposition. In comparison, the binding energy on Au/WC is considerably lower. Temperature-programmed desorption and high-resolution electron energy loss spectroscopy show that Rh/WC has the highest activity, followed by Ni/WC and Au/WC. The current results are also compared with previous studies of methanol decomposition on Pt/WC to determine the general trend in the modification effect by different metals.
机译:对于甲醇重整和直接甲醇燃料电池等应用,控制甲醇的分解途径至关重要。对甲醇在碳化钨(WC)和金属改性的C WC表面上反应的理解应为将这些材料用作重整和燃料电池应用的替代催化剂提供有用的信息。在这项研究中,我们进行了理论和实验相结合的研究,以确定通过用Ni,Rh或Au修饰WC表面来影响OH,CH和CH键断裂的途径。密度泛函理论结果表明,甲氧基物质在Rh / WC和Ni / WC上牢固结合,应导致较高的甲醇分解活性。相比之下,Au / WC上的结合能要低得多。程序升温解吸和高分辨率电子能量损失谱显示,Rh / WC的活性最高,其次是Ni / WC和Au / WC。还将当前结果与以前在Pt / WC上进行甲醇分解的研究进行比较,以确定不同金属对改性作用的总体趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号