...
【24h】

Cucurbit[6]uril: A Possible Host for Noble Gas Atoms

机译:葫芦[6] uril:稀有气体原子的可能宿主

获取原文
获取原文并翻译 | 示例
           

摘要

Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB [6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng(2) units in Ng(2)@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne-3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ng(n)@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).
机译:进行密度泛函和从头算分子动力学研究,以研究稀有气体包裹的葫芦[6]尿素(CB [6])系统的稳定性。计算相互作用能,离解能和离解焓,以了解CB [6]包裹惰性气体原子的功效。 CB [6]最多可以包封3个在3.4-4.1 kcal / mol范围内具有离解能(零点能量校正)的Ne原子,而由于尺寸较大,只有一个Ar或Kr原子包封的类似物是可行的。第二个Ar原子的离解能值仅为1.0 kcal / mol。另一方面,第二Kr的相同值为-0.5 kcal / mol,这意味着系统不稳定。稀有气体的离解过程本质上是吸热的,沿着Ne到Kr逐渐增加。发现Kr包封的类似物在室温下是可行的。但是,Ne和Ar封装的类似物需要低温。温度-压力相图突出显示了Kr @ CB [6]的缔合和解离过程将是有利的区域。在环境温度和压力下,CB [6]可用作有效的稀有气体载体。 Wiberg键指数,非共价相互作用指数,电子密度和能量分解分析被用于探索稀有气体原子与CB之间相互作用的性质[6]。发现分散相互作用是吸引能中最重要的术语。在整个298 K的模拟过程中,发现一个被Ng捕获的类似物中的Ne和Ar原子停留在CB [6]的腔内。但是,在模拟过程中,Ng(2)@CB [6]中的Ng(2)单位向CB [6]的开放面。 1 ps后,Ne-3 @ C​​B [6]的一个Ne原子几乎到达表面,将另外两个Ne原子保留在里面。在较低的温度(77 K)下,整个模拟时间(1 ps),Ng(n)@CB [6]中的所有Ng原子都保留在CB [6]的腔体内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号