...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Heterosynaptic plasticity prevents runaway synaptic dynamics
【24h】

Heterosynaptic plasticity prevents runaway synaptic dynamics

机译:异突触可塑性阻止突触动力学失控

获取原文
获取原文并翻译 | 示例
           

摘要

Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic (STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original, remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of different forms of plasticity-Hebbian and heterosynaptic-may prevent runaway synaptic dynamics and keep synaptic weights unsaturated and thus capable of further plastic changes and formation of new memories.
机译:尖峰时间相关的可塑性(STDP)和其他常规的Hebbian型可塑性规则易于产生突触权重的失控动力学。一旦被增强,突触将更有可能导致尖峰并因此被进一步增强,但是一旦被抑制,突触将倾向于被进一步抑制。可以通过精确平衡STDP增强和抑制规则来防止突触失控。但是,实验证据表明,增强和抑制窗口和强度的变化很大。在这里,我们显示了从切片中的大鼠视觉和听觉皮层突触到2/3层锥体神经元的突触修饰可通过细胞内tetanization诱导:突触后突峰的爆发而没有突触前刺激。这些异突触变化的诱导取决于细胞内钙的升高,其方向和大小与释放机制的初始状态相关。我们建议这种可塑性充当稳定突触权重分布并防止其失控动力学的机制。为了验证这一假设,我们开发了一个皮质神经元模型,该模型同时实现了同态突触(STDP)和异突触可塑性,其性质与实验数据相匹配。我们发现异突触可塑性有效地防止了STDP和输入参数的测试范围内的失控动力学。突触权重虽然从原始位置偏移,但仍保持正态分布且不饱和。我们的研究提出了一种生物物理上受约束的模型,该模型说明了不同形式的可塑性(希伯来和异质突触)之间的相互作用如何防止突触动力学失控,并使突触权重保持不饱和状态,从而能够进一步塑化变化并形成新的记忆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号