...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Posttraining ablation of adult-generated neurons degrades previously acquired memories.
【24h】

Posttraining ablation of adult-generated neurons degrades previously acquired memories.

机译:成人生成的神经元的训练后消融会降低以前获得的记忆。

获取原文
获取原文并翻译 | 示例
           

摘要

New neurons are continuously generated in the subgranular zone of the adult hippocampus and, once sufficiently mature, are thought to integrate into hippocampal memory circuits. However, whether they play an essential role in subsequent memory expression is not known. Previous studies have shown that suppression of adult neurogenesis often (but not always) impairs subsequent hippocampus-dependent learning (i.e., produces anterograde effects). A major challenge for these studies is that these new neurons represent only a small subpopulation of all dentate granule cells, and so there is large potential for either partial or complete compensation by granule cells generated earlier on during development. A potentially more powerful approach to investigate this question would be to ablate adult-generated neurons after they have already become part of a memory trace (i.e., retrograde effects). Here we developed a diphtheria toxin-based strategy in mice that allowed us to selectively ablate a population of predominantly mature, adult-generated neurons either before or after learning, without affecting ongoing neurogenesis. Removal of these neurons before learning did not prevent the formation of new contextual fear or water maze memories. In contrast, removal of an equivalent population after learning degraded existing contextual fear and water maze memories, without affecting nonhippocampal memory. Ablation of these adult-generated neurons even 1 month after learning produced equivalent memory degradation in the water maze. These retrograde effects suggest that adult-generated neurons form a critical and enduring component of hippocampal memory traces.
机译:新的神经元在成年海马的亚颗粒区连续产生,一旦成熟,就会整合到海马的记忆回路中。但是,它们在随后的记忆表达中是否起重要作用尚不清楚。先前的研究表明,抑制成人神经发生经常(但不总是)削弱随后的海马依赖性学习(即产生顺行作用)。这些研究的主要挑战是这些新的神经元仅代表所有齿状颗粒细胞的一小部分亚群,因此在发育过程中较早产生的颗粒细胞具有部分或全部补偿的巨大潜力。研究这个问题的一种可能更强大的方法是在成年神经元已经成为记忆痕迹的一部分(即逆行效应)后消除它们。在这里,我们在小鼠中开发了一种基于白喉毒素的策略,该策略使我们能够在学习之前或之后选择性地消融成年的主要由成人生成的神经元,而不会影响正在进行的神经发生。在学习之前去除这些神经元并不能阻止新的上下文恐惧或水迷宫记忆的形成。相反,在学习后移出同等数量的种群会降低现有的上下文恐惧和水迷宫记忆,而不会影响非海马记忆。这些成年神经元的消融即使在学习后1个月也会在水迷宫中产生同等的记忆力下降。这些逆行效应表明,成人生成的神经元形成了海马记忆痕迹的关键而持久的组成部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号