...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Shared internal models for feedforward and feedback control.
【24h】

Shared internal models for feedforward and feedback control.

机译:共享内部模型用于前馈和反馈控制。

获取原文
获取原文并翻译 | 示例
           

摘要

A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependentdynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.
机译:儿童经常学会在车道上骑自行车,没有不可预见的障碍。但是,当她第一次在街上骑行时,我们希望,如果突然有一辆汽车从她面前驶出,她将避免发生事故的天生目标与对自行车的了解相结合,从而转向或刹车。通常,当我们训练以执行新的运动任务时,如果它更新在线错误纠正规则以反映新任务的规则和目标,则我们的学习将最为强大。在这里,我们提供了直接的证据,即在进行了新的前馈电机调整后,即使对于在训练过程中从未遇到过的错误,对意外错误的电机反馈响应也正好适合于任务。为了研究这种能力,我们问,在适应手臂动态变化后,对手臂运动过程中偶然的意外力脉冲的在线响应是否会发生变化?具体来说,它们是否以适合任务的方式进行更改?在我们的任务中,受试者学习了新颖的速度相关动力学。但是,偶尔的力脉冲扰动会产生意想不到的速度变化。因此,在适应之后,对意外脉冲的任务适当响应应补偿速度相关动力学的相应变化。我们发现,在适应之后,脉冲响应可以精确地补偿这些变化,尽管从未接受过训练。这些结果为智能反馈控制器提供了证据,该控制器会自动生成特定于当前任务学习动态的响应。为此,基于反馈控制的神经过程必须(1)能够通过正向模型对速度进行准确的实时状态预测,并且(2)可以访问肢体动力学内部模型中最近学习到的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号