...
首页> 外文期刊>The Journal of Chemical Physics >Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin-and charge-density waves
【24h】

Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin-and charge-density waves

机译:有限温度耦合群,多体摄动以及一维固体的受限和不受限制的Hartree-Fock研究:Luttinger液体,Peierls跃迁以及自旋和电荷密度波

获取原文
获取原文并翻译 | 示例
           

摘要

One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids. (C) 2015 AIP Publishing LLC.
机译:一维(1D)固体具有多种惊人的电子结构,包括电荷密度波(CDW)和自旋密​​度波(SDW)。而且,Peierls定理指出,在零温度下,通过简单能带理论预测为金属的一维系统将自发二聚并打开有限的基带隙,而在较高温度下,它将假设等距几何形状的带隙为零(Peierls过渡)。我们使用从头开始的自旋无限制Hartree-Fock(UHF)和自旋限制耦合簇双(CCD)理论的有限温度推广,通过计算研究了聚炔和全反式聚乙炔中的这些独特电子结构和跃迁,并扩展了先前的工作[He et al。,J. Chem。物理140,024702(2014)],它基于自旋受限的Hartree-Fock(RHF)和二阶多体摄动(MP2)理论。与RHF不同,UHF可以预测SDW以及CDW和金属状态,并且与MP2不同,即使基本的RHF参考波函数是金属,CCD也不会发散。 UHF预测在低温下没有二聚作用的SDW缺口状态,随着温度的升高逐渐变成金属。 CCD同时证实了电子相关性降低了Peierls转变温度。此外,我们表明,对于两种聚合物的所有理论结果,都采用哈密顿量中不同的电子-电子相互作用强度U / t值对Hubbard-Peierls模型的UHF解进行了统一解释。 CCD波函数显示为包含Tomonaga-Luttinger模型的精确解的形式,因此有望准确描述Luttinger液体的电子结构。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号