...
首页> 外文期刊>The Journal of Chemical Physics >Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation
【24h】

Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation

机译:离子液体诱导的溶菌酶脱水和结构域封闭:FCS和MD模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the structure and dynamics of the protein, lysozyme, is investigated by fluorescence correlation spectroscopy (FCS) and molecular dynamic (MD) simulation. The FCS data indicate that addition of the RTIL ([pmim][Br]) leads to reduction in size and faster conformational dynamics of the protein. The hydrodynamic radius (r(H)) of lysozyme decreases from 18 angstrom in 0 M [pmim][Br] to 11 angstrom in 1.5 M [pmim][Br] while the conformational relaxation time decreases from 65 mu s to 5 mu s. Molecular origin of the collapse (size reduction) of lysozyme in aqueous RTIL is analyzed by MD simulation. The radial distribution function of water, RTIL cation, and RTIL anion from protein clearly indicates that addition of RTIL causes replacement of interfacial water by RTIL cation ([pmim](+)) from the first solvation layer of the protein providing a comparatively dehydrated environment. This preferential solvation of the protein by the RTIL cation extends up to 30 angstrom from the protein surface giving rise to a nanoscopic cage of overall radius 42 angstrom. In the nanoscopic cage of the RTIL (42 angstrom), volume fraction of the protein (radius 12 angstrom) is only about 2%. RTIL anion does not show any preferential solvation near protein surface. Comparison of effective radius obtained from simulation and from FCS data suggests that the dry protein (radius 12 angstrom) alone diffuses in a nanoscopic cage of RTIL (radius 42 angstrom). MD simulation further reveals a decrease in distance (domain closure) between the two domains (alpha and beta) of the protein leading to a more compact structure compared to that in the native state. (C) 2015 AIP Publishing LLC.
机译:通过荧光相关光谱(FCS)和分子动力学(MD)模拟研究了室温离子液体(RTIL,[pmim] [Br])对蛋白质溶菌酶的结构和动力学的影响。 FCS数据表明,添加RTIL([pmim] [Br])会导致蛋白质尺寸减小和构象动力学加快。溶菌酶的流体动力学半径(r(H))从0 M [pmim] [Br]中的18埃降低到1.5 M [pmim] [Br]中的11埃,而构象弛豫时间从65μs降低至5μs 。通过MD模拟分析了溶菌酶在RTIL水溶液中的崩解(尺寸减小)的分子起源。蛋白质中水,RTIL阳离子和RTIL阴离子的径向分布函数清楚地表明,添加RTIL会导致蛋白质第一溶剂化层中的RTIL阳离子([pmim](+))代替界面水,从而提供相对脱水的环境。 RTIL阳离子对蛋白质的这种优先溶剂化作用从蛋白质表面延伸至30埃,从而形成了一个总半径为42埃的纳米级笼子。在RTIL的纳米笼中(42埃),蛋白质的体积分数(半径12埃)仅约为2%。 RTIL阴离子在蛋白质表面附近没有任何优先的溶剂化作用。从仿真和FCS数据获得的有效半径的比较表明,干蛋白(半径12埃)仅在纳米级的RTIL笼(半径42埃)中扩散。 MD模拟进一步揭示了蛋白质的两个结构域(α和β)之间的距离(结构域封闭)的减少,与天然状态相比,结构更加紧凑。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号