...
首页> 外文期刊>The Journal of Chemical Physics >Azole energetic materials: Initial mechanisms for the energy release from electronical excited nitropyrazoles
【24h】

Azole energetic materials: Initial mechanisms for the energy release from electronical excited nitropyrazoles

机译:偶氮高能材料:电子激发硝基吡唑释放能量的初始机理

获取原文
获取原文并翻译 | 示例
           

摘要

Decomposition of energetic material 3,4-dinitropyrazole (DNP) and two model molecules 4-nitropyrazole and 1-nitropyrazole is investigated both theoretically and experimentally. The initial decomposition mechanisms for these three nitropyrazoles are explored with complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from all three materials subsequent to UV excitation. Observed NO products are rotationally cold (<50 K) for all three systems. The vibrational temperature of the NO product from DNP is (3850 ± 50) K, 1350 K hotter than that of the two model species. Potential energy surface calculations at the CASSCF(12,8)/6-31+G(d) level illustrate that conical intersections plays an essential role in the decomposition mechanism. Electronically excited S_2 nitropyraozles can nonradiatively relax to lower electronic states through (S_2/S_1)_(CI) and (S_1/S_0)_(CI) conical intersection and undergo a nitro-nitrite isomerization to generate NO product either in the S_1 state or S_0 state. In model systems, NO is generated in the S_1 state, while in the energetic material DNP, NO is produced on the ground state surface, as the S_1 decomposition pathway is energetically unavailable. The theoretically predicted mechanism is consistent with the experimental results, as DNP decomposes in a lower electronic state than do the model systems and thus the vibrational energy in the NO product from DNP should be hotter than from the model systems. The observed rotational energy distributions for NO are consistent with the final structures of the respective transition states for each molecule.
机译:从理论上和实验上研究了高能材料3,4-二硝基吡唑(DNP)和两个模型分子4-硝基吡唑和1-硝基吡唑的分解。在完全的活性空间自洽场(CASSCF)水平下探索了这三种硝基吡唑的初始分解机理。观察到NO分子是UV激发后所有三种材料的初始分解产物。对于所有三个系统,观察到的NO产物都是旋转冷(<50 K)。 DNP生成的NO产物的振动温度为(3850±50)K,比两个模型物种的温度高1350K。在CASSCF(12,8)/ 6-31 + G(d)级的势能面计算表明,圆锥形相交在分解机理中起着至关重要的作用。电子激发的S_2硝基吡咯可以通过(S_2 / S_1)_(CI)和(S_1 / S_0)_(CI)圆锥形相交点以非辐射方式弛豫以降低电子态,并经历亚硝酸亚硝酸酯异构化以生成S_1态或NO态的NO产物。 S_0状态。在模型系统中,在S_1状态下生成NO,而在高能材料DNP中,由于在能量上无法使用S_1分解路径,因此在基态表面上生成NO。理论上预测的机理与实验结果一致,因为DNP在比模型系统更低的电子状态下分解,因此DNP的NO产物中的振动能应该比模型系统更热。观察到的NO的旋转能分布与每个分子各自的过渡态的最终结构一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号