...
首页> 外文期刊>The Journal of Chemical Physics >The Stokes-Einstein relation at moderate Schmidt number
【24h】

The Stokes-Einstein relation at moderate Schmidt number

机译:施密特数为适度的斯托克斯-爱因斯坦关系

获取原文
获取原文并翻译 | 示例
           

摘要

The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when momentum diffuses much faster than the particle. When the Schmidt number is moderate, which happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein prediction are expected. We study these corrections computationally using a recently developed minimally resolved method for coupling particles to an incompressible fluctuating fluid in both two and three dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced relative to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt numbers, consistent with linear response theory. The mismatch arises because thermal fluctuations affect the drag coefficient for a particle due to the nonlinear nature of the fluid-particle coupling. The numerical data are in good agreement with an approximate self-consistent theory, which can be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle itself diffuses together with the momentum. Our study separates effects coming from corrections to no-slip hydrodynamics from those of finite separation of time scales, allowing for a better understanding of widely observed deviations from the Stokes-Einstein prediction in particle methods such as molecular dynamics.
机译:悬浮在不可压缩流体中的球形粒子的自扩散系数的Stokes-Einstein关系是在大Schmidt数的限制下(即当动量比粒子扩散快得多时)的渐近结果。当Schmidt数适中时(在大多数流体动力学粒子方法中会发生这种情况),预计会偏离Stokes-Einstein预测。我们使用最近开发的最小分辨方法将这些粒子耦合到二维和三维两个不可压缩的波动流体中,以计算方式研究这些校正。我们发现,对于适中的施密特数,在两个维度和三个维度上,扩散系数相对于斯托克斯-爱因斯坦预测都减小与施密特数成反比的量。但是,我们发现,在所有Schmidt数下都遵循爱因斯坦公式,这与线性响应理论一致。之所以出现不匹配,是因为由于流体-粒子耦合的非线性特性,热波动会影响粒子的阻力系数。数值数据与近似自洽理论非常吻合,该理论可用于估算多种方法中的有限施密特数校正。我们的结果表明,对Stokes-Einstein公式的修正主要来自粒子本身与动量一起扩散的事实。我们的研究将对修正的无滑流动力学的影响与时间尺度的有限分离分离开来,以便更好地理解广泛观察到的与粒子方法(例如分子动力学)中Stokes-Einstein预测的偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号