...
首页> 外文期刊>The Journal of Chemical Physics >Functionalization of carbon nanotubes with -CH_n, -NH_n fragments, -COOH and -OH groups
【24h】

Functionalization of carbon nanotubes with -CH_n, -NH_n fragments, -COOH and -OH groups

机译:具有-CH_n,-NH_n片段,-COOH和-OH基团的碳纳米管的功能化

获取原文
获取原文并翻译 | 示例
           

摘要

We present results of extensive theoretical studies concerning stability, morphology, and band structure of single wall carbon nanotubes (CNTs) covalently functionalized by -CH_n (for n = 2,3,4), -NHn (for n = 1,2,3,4), -COOH, and -OH groups. These studies are based on ab initio calculations in the framework of the density functional theory. For functionalized systems, we determine the dependence of the binding energies on the concentration of the adsorbed molecules, critical densities of adsorbed molecules, global and local changes in the morphology, and electronic structure paying particular attention to the functionalization induced changes of the band gaps. These studies reveal physical mechanisms that determine stability and electronic structure of functionalized systems and also provide valuable theoretical predictions relevant for application. In particular, we observe that functionalization of CNTs causes generally their elongation and locally sp ~2 to sp~3 rehybridization in the neighborhood of chemisorbed molecules. For adsorbants making particularly strong covalent bonds with the CNTs, such as the -CH_2 fragments, we observe formation of the characteristic pentagon/heptagon (5/7) defects. In systems functionalized with the -CH_2, -NH_4, and -OH groups, we determine critical density of molecules that could be covalently bound to the lateral surface of CNTs. Our studies show that functionalization of CNTs can be utilized for band gap engineering. Functionalization of CNTs can also lead to changes in their metallic/semiconductor character. In semiconducting CNTs, functionalizing molecules such as -CH_3, -NH_2, -OH, -COOH, and both -OH and -COOH, introduce "impurity" bands in the band gap of pristine CNTs. In the case of -CH_3, -NH_2 molecules, the induced band gaps are typically smaller than in the pure CNT and depend strongly on the concentration of adsorbants. However, functionalization of semiconducting CNTs with hydroxyl groups leads to the metallization of CNTs. On the other hand, the functionalization of semi-metallic (9,0) CNT with -CH_2 molecules causes the increase of the band gap and induces semi-metall to semiconductor transition.
机译:我们提供了广泛的理论研究结果,这些结果涉及-CH_n(对于n = 2,3,4),-NHn(对于n = 1,2,3)共价官能化的单壁碳纳米管(CNT)的稳定性,形态和能带结构,4),-COOH和-OH基团。这些研究基于密度泛函理论框架内的从头算。对于功能化系统,我们确定结合能对吸附分子浓度,吸附分子的临界密度,形态的整体和局部变化以及电子结构的依赖性,尤其要注意功能化引起的带隙变化。这些研究揭示了确定功能化系统的稳定性和电子结构的物理机制,并提供了与应用相关的有价值的理论预测。特别是,我们观察到碳纳米管的官能化通常会导致其伸长,并在化学吸附分子附近局部引起sp〜2至sp〜3的再杂交。对于与CNT形成特别强的共价键的吸附剂(例如-CH_2片段),我们观察到形成了特征性的五边形/七边形(5/7)缺陷。在使用-CH_2,-NH_4和-OH基团官能化的系统中,我们确定了可以与CNT的侧表面共价结合的分子的临界密度。我们的研究表明,碳纳米管的功能化可用于带隙工程。 CNT的功能化还可能导致其金属/半导体特性发生变化。在半导体CNT中,官能化分子(例如-CH_3,-NH_2,-OH,-COOH以及-OH和-COOH两者)在原始CNT的带隙中引入“杂质”带。在-CH_3,-NH_2分子的情况下,诱导的带隙通常小于纯CNT中的带隙,并且强烈依赖于吸附剂的浓度。然而,具有羟基的半导体CNT的官能化导致CNT的金属化。另一方面,具有-CH_2分子的半金属(9,0)CNT的官能化导致带隙增加,并引起半金属向半导体的转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号