...
首页> 外文期刊>The Journal of Chemical Physics >Crawling of a driven adherent membrane
【24h】

Crawling of a driven adherent membrane

机译:爬行的粘附膜

获取原文
获取原文并翻译 | 示例
           

摘要

We discuss motions of an elastic N × M membrane model whose constituents can bind reversibly with strength to adhesive sites of a flat substrate. One of the edges of the membrane (front) is driven in one direction at rate constant p by N stochastically treadmilling short parallel lines (cortex). The main conclusions derived from Monte Carlo studies of this model are the following: (a) Since the polymerizing cortex pushes only the leading edge of the membrane, the major part of the membranes is dragged behind. Therefore, the locomotion of the membrane can be described by frictional sliding processes which are asymmetrically distributed between front and rear of the membrane. A signature of this asymmetry is the difference between the life times of adhesion bonds at front and rear, τ_1 and τ_M, respectively, where τ_1 τ_M. (b) There are four characteristic times for the membrane motion: The first time, T_0 ~ τ_M ~ e~a, is the resting time where the displacement of the membrane is practically zero. The second time, T_p ~ τ_1 ~ M, is the friction time which characterizes the time between two consecutive ruptures of adhesion bonds at the front, and which signalizes the onset of drift (protrusion) at the leading edge. The third time, T_r ~ M~(γ) (γ > 1), characterizes the retraction of the trailing edge, which is the retarded response to the pulling leading edge. The fourth time, T_L ~ M~2, is the growth time for fluctuation of the end-to-end distance. (c) The separation of time scales, T_rT_p ~ M~(γ - 1), leads to stretched fluctuations of the end-to-end distance, which are considered as stochastic cycles of protrusion and retraction on the time scale of T_L. (d) The drift velocity v obeys anomalous scaling, v/p~f(p1/γM), where f (z) ~ const. for small drag pM 1, and f (z) ~ z~(-γ) for pM 1, which implies v~M-γ. These results may also turn out to be useful for the (more difficult) problem of understanding the protrusion-retraction cycle of crawling biological cells. We compare our model and our results to previous two-particle theories for membrane protrusion and to known stochastic friction models.
机译:我们讨论了一个弹性的N×M膜模型的运动,该模型的成分可以与强度可逆地结合到平坦基材的粘合部位。膜片的边缘之一(前部)通过N个随机的短平行线(皮层)踏步以速率常数p在一个方向上驱动。从该模型的蒙特卡洛研究得出的主要结论如下:(a)由于聚合皮质仅推动膜的前缘,因此膜的主要部分被拖到后面。因此,可以通过在膜的前后之间不对称分布的摩擦滑动过程来描述膜的运动。这种不对称性的一个特征是在正面和背面的粘合寿命分别为τ_1和τ_M之间的差异,其中τ_1τ_M。 (b)膜的运动有四个特征时间:第一次,T_0〜τ_M〜e〜a,是膜的位移实际上为零的静止时间。第二次T_p〜τ_1〜M是摩擦时间,该摩擦时间表征了前面两个连续的粘合力断裂之间的时间,并预示了在前缘开始出现漂移(突出)。第三次,T_r〜M〜(γ)(γ> 1),表征后缘的回缩,这是对前缘的延迟响应。第四次,T_L〜M〜2,是端到端距离波动的增长时间。 (c)时间尺度的分离T_rT_p〜M〜(γ-1)导致端到端距离的伸展波动,这被认为是T_L时间尺度上的上进和退回的随机周期。 (d)漂移速度v服从反比例关系,v / p〜f(p1 /γM),其中f(z)〜const。对于小阻力pM 1,f(z)〜z〜(-γ)对于pM 1,这意味着v〜M-γ。这些结果也可能对于理解爬行的生物细胞的突出-收缩循环的(更困难的)问题有用。我们将我们的模型和我们的结果与先前的两个关于膜突出的两粒子理论以及已知的随机摩擦模型进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号