...
首页> 外文期刊>The Journal of Chemical Physics >The influence of water on the structural and transport properties of model ionic liquids
【24h】

The influence of water on the structural and transport properties of model ionic liquids

机译:水对模型离子液体的结构和传输性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular dynamics simulations are used to investigate the influence of water on model ionic liquids. Several models, where the ions vary in size, and in the location of the charge with respect to the center of mass, are considered. Particular attention is focused on the variation in transport properties (diffusion coefficients, shear viscosity, and electrical conductivity) with water concentration. An effort is made to identify the underlying physical reasons for water's influence. The results for our model ionic liquids fall loosely into two categories, depending on the molecular characteristics of the constituent ions. If the ion size disparity is not too large (cation:anion diameter ratio2:1), and if the ion charge location is such that directional ion pair bonds are relatively weak, then we find that the ionic diffusion coefficients and the electrical conductivity increase, and the viscosity decreases with increasing water concentration. This agrees with what is commonly observed experimentally for room temperature ionic liquids (RTILs). For these systems, we do not find changes in the equilibrium structure that can account for the strong influence of water on the transport properties. Rather, by varying the molecular mass of water in our simulations, we demonstrate that the dominant effect of water can be dynamical in origin. In RTIL-water mixtures, the molecular mass of water is generally much less than that of the ions it replaces. These lighter water molecules tend to displace much heavier counterions from the ion coordination shells. This reduces caging and increases the diffusivity, which leads to higher conductivities and lower viscosities. For models with a larger ion size disparity (3:1), or in charge-off-center systems, where strong directional ion pairs are important in the pure ionic liquid, the behavior can be quite different. In these systems, the diffusion coefficients and electrical conductivity can still display conventional behavior and increase when water is added even though the reasons for this can be more complex than in the simpler cases noted above. However, in these systems the viscosity can increase, sometimes quite steeply, with increasing water concentration. We trace this unusual behavior to the formation of associated structures, extended anion-water chains that can weave among the cations in the size disparate case, and strongly bound cation-water-anion clusters in the charge-off-center systems.
机译:分子动力学模拟用于研究水对离子液体模型的影响。考虑了几种模型,其中离子的大小以及相对于质心的电荷位置均发生变化。特别注意的是运输特性(扩散系数,剪切粘度和电导率)随水浓度的变化。努力确定造成水影响的潜在物理原因。根据组成离子的分子特性,我们的模型离子液体的结果大致分为两类。如果离子尺寸差异不太大(阳离子:阴离子直径比为2:1),并且如果离子电荷的位置使得定向离子对键相对较弱,那么我们发现离子扩散系数和电导率会增加,粘度随水浓度的增加而降低。这与对室温离子液体(RTIL)的实验性观察一致。对于这些系统,我们没有找到平衡结构的变化来解释水对传输特性的强烈影响。相反,通过在我们的模拟中改变水的分子质量,我们证明了水的主要作用可能是动态的。在RTIL-水混合物中,水的分子质量通常比其替代的离子的分子量小得多。这些较轻的水分子往往会从离子配位壳中置换出更重的抗衡离子。这减少了笼罩并增加了扩散率,从而导致更高的电导率和更低的粘度。对于具有较大离子尺寸差异(3:1)的模型,或在中心偏电系统中,强方向性离子对在纯离子液体中很重要的模型,其行为可能会大不相同。在这些系统中,扩散系数和电导率仍然可以显示常规行为,并且当添加水时其扩散系数和电导率会增加,即使这样做的原因可能比上述简单情况更为复杂。但是,在这些系统中,随着水浓度的增加,粘度有时会急剧上升。我们将这种不寻常的行为追溯到相关结构的形成,在大小不同的情况下可以在阳离子之间编织的扩展的阴离子水链以及在电荷偏离中心的系统中牢固结合的阳离子水阴离子簇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号