...
首页> 外文期刊>The Journal of Chemical Physics >Thermodynamically dominant hydration structures of aqueous ions
【24h】

Thermodynamically dominant hydration structures of aqueous ions

机译:水离子的热力学主导水合结构

获取原文
获取原文并翻译 | 示例
           

摘要

The hydration free energy of an ion is separated into a chemical term, arising due to the interaction of the ion with water molecules within the defined coordination sphere (the inner shell), a packing contribution, accounting for forming an ion-free coordination sphere (the observation volume) in the solvent, and a long range correction, accounting for the interaction of the ion with the solvent outside the coordination sphere. The chemical term is recast as a sum over coordination states, with the nth term depending on the probability of observing n water molecules in the observation volume and the free energy of assembling the n water molecules around the ion in the presence of the outer-shell solvent. Each stepwise increment in the coordination number more fully accounts for the chemical contribution, and this molecular aufbau approach is used to interrogate the thermodynamic importance of various hydration structures X[ H_2O]n of X(aq)X=Na+, K+, F- within a classical molecular mechanics framework. States with n less than (and at best equal to) the most probable coordination state n account for all of the chemical term and evince the role of the ion in drawing water molecules into the coordination sphere. For states with n n, the influence of the ion is tempered and changes in coordination states due to density fluctuations in water also appear important. Thus the influence of the ion on the solvent matrix is local, and only a subset of water molecules n n contributes dominantly to the hydration thermodynamics. The n=4 state of Na+ n =5 and K+ n =7 and the n=6 state of F n =6 are thermodynamically dominant; adding a water molecule to the dominant state additionally contributes only about 2–3 kBT toward the chemical term, but removing a water molecule is very unfavorable.
机译:离子的水合自由能被分离为一个化学术语,这是由于离子与定义的配位球(内壳)中的水分子相互作用而产生的,其堆积贡献有助于形成无离子配位球(观察体积),并进行远距离校正,以解决离子与配位球外溶剂之间的相互作用。化学项被重整为配位态的总和,第n个项取决于在观测体积中观察到n个水分子的概率以及在存在外壳的情况下在离子周围组装n个水分子的自由能溶剂。配位数的每一个逐步增加都更充分地说明了化学贡献,并且使用这种分子aufbau方法来探究X(aq)X = Na +,K +,F-中各种水合结构X [H_2O] n的热力学重要性。经典的分子力学框架。 n小于(最好等于)最可能的配位状态n的状态解释了所有化学术语,并说明了离子在将水分子吸入配位球中的作用。对于具有n n的状态,离子的影响得到缓和,并且由于水中密度波动而引起的配位态变化也显得很重要。因此,离子对溶剂基质的影响是局部的,只有水分子n n的子集对水合热力学起主要作用。 Na + n = 5和K + n = 7的n = 4状态以及F n = 6的n = 6状态在热力学上占优势;另外,将水分子添加到显性状态对化学术语的贡献仅约2-3 kBT,但是去除水分子非常不利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号