...
首页> 外文期刊>The Journal of Chemical Physics >An optimized full-configuration-interaction nuclear orbital approach to a “hard-core” interaction problem: Application to (~3He)_N–Cl_2(B) clusters (N≤4)
【24h】

An optimized full-configuration-interaction nuclear orbital approach to a “hard-core” interaction problem: Application to (~3He)_N–Cl_2(B) clusters (N≤4)

机译:针对“核心”相互作用问题的一种优化的全配置相互作用核轨道方法:应用于(〜3He)_N–Cl_2(B)团簇(N≤4)

获取原文
获取原文并翻译 | 示例
           

摘要

An efficient full-configuration-interaction nuclear orbital treatment has been recently developed as a benchmark quantum-chemistry-like method to calculate ground and excited “solvent” energies and wave functions in small doped △E_(est) clusters (N≤4) [M. P. de Lara-Castells, G. Delgado-Barrio, P. Villarreal, and A. O. Mitrushchenkov, J. Chem. Phys. 125, 221101 (2006)]. Additional methodological and computational details of the implementation, which uses an iterative Jacobi– Davidson diagonalization algorithm to properly address the inherent “hard-core” He–He interaction problem, are described here. The convergence of total energies, average pair He–He interaction energies, and relevant one- and two-body properties upon increasing the angular part of the one-particle basis set (expanded in spherical harmonics) has been analyzed, considering Cl_2 as the dopant and a semiempirical model (T-shaped) He–Cl_2(B) potential. Converged results are used to analyze global energetic and structural aspects as well as the configuration makeup of the wave functions, associated with the ground and low-lying “solvent” excited states. Our study reveals that besides the fermionic nature of ~3He atoms, key roles in determining total binding energies and wave-function structures are played by the strong repulsive core of the He–He potential as well as its very weak attractive region, the most stable arrangement somehow departing from the one of N He atoms equally spaced on equatorial “ring” around the dopant. The present results for N=4 fermions indicates the structural “pairing” of two 3He atoms at opposite sides on a broad “belt” around the dopant, executing a sort of asymmetric umbrella motion. This pairing is a compromise between maximizing the ~3He– ~3He and the He-dopant attractions, and suppressing at the same time the “hard-core” repulsion. Although the He–He attractive interaction is rather weak, its contribution to the total energy is found to scale as a power of three and it thus increasingly affects the pair density distributions as the cluster grows in size.
机译:最近开发了一种有效的全构型相互作用核轨道处理方法,作为一种类似于量子化学的基准方法,用于计算小的掺杂△E_(est)簇(N≤4)中的地面和激发“溶剂”能和波函数[ M. P.de Lara-Castells,G.Delgado-Barrio,P.Villarreal和A.O.Mitrushchenkov,J.Chem。物理125,221101(2006)]。此处介绍了实现的其他方法和计算细节,该方法使用迭代的Jacobi-Davidson对角化算法正确解决了固有的“硬核” He-He交互问题。分析了将Cl_2作为掺杂剂时,总能量,平均对He-He相互作用能以及相关的一体和两体性质在增加一粒子基集(在球谐函数中扩展)的角部分时的收敛性。半经验模型(T形)He–Cl_2(B)势。收敛的结果用于分析整体的能量和结构方面,以及与地面和低洼的“溶剂”激发态相关的波动函数的构造组成。我们的研究表明,除了〜3He原子的铁离子性质外,He-He势的强排斥核及其非常弱的吸引力区(最稳定的)在确定总结合能和波函数结构方面起着关键作用。这种排列以某种方式偏离了在掺杂剂周围等距分布在赤道“环”上的N He原子之一。 N = 4费米子的当前结果表明,两个3He原子在掺杂物周围的宽“带”上相对两侧的结构“配对”,执行了一种不对称的伞形运动。这种配对是在最大程度地增大〜3He–〜3He和He掺杂物吸引力之间的折衷方案,同时抑制了“硬核”排斥。尽管He-He有吸引力的相互作用相对较弱,但发现其对总能量的贡献是3的幂,并且随着簇的大小增长,它对结对密度分布的影响越来越大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号