...
首页> 外文期刊>The Journal of Chemical Physics >Introducing phase transitions to quantum chemistry: From Trouton's rule to first principles vaporization entropies
【24h】

Introducing phase transitions to quantum chemistry: From Trouton's rule to first principles vaporization entropies

机译:向量子化学引入相变:从特劳顿法则到第一性原理汽化熵

获取原文
获取原文并翻译 | 示例
           

摘要

In the present study, we employ quantum cluster equilibrium calculations on a small water cluster set in order to derive thermochemical equilibrium properties of the liquid phase as well as the liquid-vapor phase transition. The focus is set on the calculation of liquid phase entropies, from which entropies of vaporization at the normal boiling point of water are derived. Different electronic structure methods are compared and the influences of basis set size and of cooperative effects are discussed. In line with a previous study on the subject [B. Kirchner, J. Chem. Phys. 123, 204116 (2005)], we find that the neglect of cooperativity leads to large errors in the equilibrium cluster populations as well as in the obtained entropy values. In contrast, a correct treatment of the intermolecular many-body interaction yields liquid phase entropies and phase transition entropies being in very good agreement with the experimental reference, thus demonstrating that the quantum cluster equilibrium partition function intrinsically accounts for the shortcomings of the ideal gas partition function often employed in first principles entropy calculations. Comparing the calculated vaporization entropies to the value predicted by Trouton's rule, it is observed that for entropy calculations the consideration of intracluster cooperative effects is more important than the explicit treatment of the intercluster association even in a highly associated liquid such as water. The decomposition of entropy into contributions due to different degrees of freedom implies the need for the accurate treatment of particle indistinguishability and free volume of translation, whereas minor influences should be expected from the vibrational and rotational degrees of freedom and none from the electronic degrees of freedom. (c) 2008 American Institute of Physics.
机译:在本研究中,我们在一个小的水簇集上采用量子簇平衡计算,以推导出液相的热化学平衡性质以及液-汽相变。重点放在液相熵的计算上,从中推导出在水的正常沸点下的汽化熵。比较了不同的电子结构方法,并讨论了基集大小和协同效应的影响。符合先前对该主题的研究[B. Kirchner,J. Chem。物理123,204116(2005)],我们发现对合作性的忽视会导致平衡簇群以及所获得的熵值中的较大误差。相反,正确处理分子间多体相互作用会产生液相熵和相变熵,与实验参考非常吻合,因此证明了量子簇平衡分配函数本质上解决了理想气体分配的缺点。第一原理熵计算中经常采用的函数。将计算的汽化熵与Trouton规则预测的值进行比较,可以观察到,对于熵计算,即使在高度关联的液体(例如水)中,考虑团簇内协同效应也比明确处理团簇间缔合更为重要。由于不同的自由度,熵分解成贡献意味着需要对粒子的可分辨性和平移自由度进行精确处理,而振动和旋转自由度应受到较小的影响,而电子自由度则应无影响。 (c)2008年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号